
Reliable Multicasting with the JGroups Toolkit

Copyright © 1998-2006 Bela BanCopyright © 2006-2011 Red Hat Inc

Table of Contents
Foreword ..vi
Acknowledgments .. viii
1. Overview ...1

1.1. Channel ...2
1.2. Building Blocks ...3
1.3. The Protocol Stack ...3
1.4. Header ...4
1.5. Event ...4

2. Installation and Configuration ..5
2.1. Requirements ...5
2.2. Installing the binary distribution ..5
2.3. Installing the source distribution ..5
2.4. Building JGroups (source distribution only) ...6
2.5. Testing your Setup ...7
2.6. Running a Demo Program ...7
2.7. Using IP Multicasting without a network connection ..8
2.8. It doesn't work ! ...9
2.9. The instances still don't find each other ! ..9
2.10. Problems with IPv6 ..10
2.11. Wiki ..10
2.12. I have discovered a bug ! ..10
2.13. Supported classes ...11

2.13.1. Experimental ...11
2.13.2. Unsupported ..12

3. API ..14
3.1. Utility classes ..14

3.1.1. objectToByteBuffer(), objectFromByteBuffer() ...14
3.2. Interfaces ...14

3.2.1. MessageListener ..14
3.2.2. ExtendedMessageListener ..15
3.2.3. MembershipListener ..15
3.2.4. ExtendedMembershipListener ..16
3.2.5. ChannelListener ..16
3.2.6. Receiver ...16
3.2.7. ExtendedReceiver ..17
3.2.8. ReceiverAdapter and ExtendedReceiverAdapter ..17

3.3. Address ...17
3.4. Message ..18
3.5. View ...19

3.5.1. ViewId ...19
3.5.2. MergeView ...19

3.6. JChannel ..20
3.6.1. Creating a channel ...21

3.6.1.1. Programmatic creation ..22

JBoss ii

3.6.2. Setting options ..23
3.6.3. Giving the channel a logical name ..24
3.6.4. Generating custom addresses ..25
3.6.5. Connecting to a channel ...25
3.6.6. Connecting to a channel and getting the state in one operation ..26
3.6.7. Getting the local address and the group name ..26
3.6.8. Getting the current view ...27
3.6.9. Sending a message ...27
3.6.10. Receiving a message ..28
3.6.11. Using a Receiver to receive messages ...30
3.6.12. Peeking at a message ...30
3.6.13. Getting the group's state ...31
3.6.14. Getting the state with a Receiver ...32
3.6.15. Partial state transfer ...32
3.6.16. Streaming state transfer ..33
3.6.17. Disconnecting from a channel ..35
3.6.18. Closing a channel ..35

4. Building Blocks ..36
4.1. PullPushAdapter ..36

4.1.1. Example ...37
4.2. MessageDispatcher ..37

4.2.1. Example ...39
4.3. RpcDispatcher ...40

4.3.1. Example ...41
4.3.1.1. RequestOptions ..42
4.3.1.2. Asynchronous calls with futures ..42

4.4. ReplicatedHashMap ...43
4.5. NotificationBus ..43
4.6. Distributed locking ...44

4.6.1. Locking and merges ..45
4.7. Distributed ExecutionService ..45

5. Advanced Concepts ..47
5.1. Using multiple channels ..47
5.2. The shared transport: sharing a transport between multiple channels in a JVM47
5.3. Transport protocols ..49

5.3.1. UDP ...50
5.3.1.1. Using UDP and plain IP multicasting ...50
5.3.1.2. Using UDP without IP multicasting ...51

5.3.2. TCP ..52
5.3.2.1. Using TCP and TCPPING ...53
5.3.2.2. Using TCP and TCPGOSSIP ...53

5.3.3. TUNNEL ..54
5.3.3.1. Using TUNNEL to tunnel a firewall ...54

5.4. The concurrent stack ..56
5.4.1. Overview ..57

5.4.1.1. Configuration ...58
5.4.2. Elimination of up and down threads ..59
5.4.3. Concurrent message delivery ..59
5.4.4. Scopes: concurrent message delivery for messages from the same sender60

Reliable Multicasting with the JGroups Toolkit

JBoss iii

5.4.5. Out-of-band messages ..61
5.4.6. Replacing the default and OOB thread pools ...61
5.4.7. Sharing of thread pools between channels in the same JVM ...62

5.5. Misc ..62
5.5.1. Shunning ..62
5.5.2. Using a custom socket factory ..63

5.6. Handling network partitions ..64
5.6.1. Merging substates ..64
5.6.2. The primary partition approach ..65
5.6.3. The Split Brain syndrome and primary partitions ...66

5.7. Flushing: making sure every node in the cluster received a message ..67
5.8. Large clusters ..68

5.8.1. Reducing chattiness ...68
5.8.1.1. Discovery ...68
5.8.1.2. Failure detection protocols ..68

5.9. Bridging between remote clusters ..69
5.9.1. Views ...71
5.9.2. Configuration ..71

5.10. Daisychaining ..72
5.10.1. Traditional N-1 approach ...72
5.10.2. Daisychaining approach ...72
5.10.3. Switch usage ...73
5.10.4. Performance ..73
5.10.5. Configuration ..73

5.11. Ergonomics ..74
6. Writing protocols ..75

6.1. Anatomy of a protocol ..75
6.2. Writing user defined headers ...75

7. List of Protocols ...78
7.1. Transport ...78

7.1.1. UDP ...78
7.1.2. TCP ..81
7.1.3. TUNNEL ..84

7.2. Initial membership discovery ..87
7.2.1. PING ..87
7.2.2. FILE_PING ..88
7.2.3. JDBC_PING ...90
7.2.4. TCPPING ...91
7.2.5. TCPGOSSIP ...92
7.2.6. MPING ...94
7.2.7. BPING ...95
7.2.8. S3_PING ..96

7.3. Merging after a network partition ..97
7.3.1. MERGE2 ..98

7.4. Failure Detection ..98
7.4.1. FD ..98
7.4.2. FD_ALL ...99
7.4.3. FD_SIMPLE ... 100
7.4.4. FD_PING ... 100

Reliable Multicasting with the JGroups Toolkit

JBoss iv

7.4.5. FD_ICMP ... 100
7.4.6. FD_SOCK .. 101
7.4.7. VERIFY_SUSPECT .. 102

7.5. Reliable message transmission .. 103
7.5.1. pbcast.NAKACK .. 103
7.5.2. UNICAST ... 105
7.5.3. UNICAST2 ... 105

7.6. Fragmentation .. 107
7.6.1. FRAG and FRAG2 .. 107

7.7. Ordering .. 107
7.7.1. SEQUENCER ... 107

7.8. Group Membership .. 108
7.8.1. pbcast.GMS .. 108

7.8.1.1. Disabling the initial coordinator ... 109
7.9. Security ... 110

7.9.1. ENCRYPT .. 110
7.9.2. AUTH .. 111

7.10. State Transfer ... 111
7.10.1. pbcast.STATE_TRANSFER .. 111
7.10.2. pbcast.STREAMING_STATE_TRANSFER ... 111

7.10.2.1. Overview ... 111
7.10.2.2. API .. 112
7.10.2.3. Configuration ... 114
7.10.2.4. Other considerations ... 115

7.11. Flow control .. 115
7.11.1. FC .. 115
7.11.2. SFC .. 116
7.11.3. MFC and UFC ... 117

7.11.3.1. MFC .. 117
7.11.3.2. UFC ... 118

7.12. Message stability .. 119
7.12.1. STABLE ... 120

7.13. Misc .. 120
7.13.1. COMPRESS ... 120
7.13.2. pbcast.FLUSH ... 121
7.13.3. SCOPE ... 122
7.13.4. RELAY .. 123
7.13.5. STOMP .. 124
7.13.6. DAISYCHAIN .. 128
7.13.7. RATE_LIMITER .. 128
7.13.8. Locking protocols .. 129

7.13.8.1. CENTRAL_LOCK ... 129
7.13.8.2. PEER_LOCK ... 130

7.13.9. CENTRAL_EXECUTOR .. 131
Bibliography .. 132

Reliable Multicasting with the JGroups Toolkit

JBoss v

Foreword
This is the JGroups manual. It provides information about:

1. Installation and configuration

2. Using JGroups (the API)

3. Configuration of the JGroups protocols

The focus is on how to use JGroups, not on how JGroups is implemented.

Here are a couple of points I want to abide by throughout this book:

1. I like brevity. I will strive to describe concepts as clearly as possible (for a non-native English speaker) and
will refrain from saying more than I have to to make a point.

2. I like simplicity. Keep It Simple and Stupid. This is one of the biggest goals I have both in writing this manual
and in writing JGroups. It is easy to explain simple concepts in complex terms, but it is hard to explain a com-
plex system in simple terms. I'll try to do the latter.

So, how did it all start?

I spent 1998-1999 at the Computer Science Department at Cornell University as a post-doc, in Ken Birman's group.
Ken is credited with inventing the group communication paradigm, especially the Virtual Synchrony model. At the
time they were working on their third generation group communication prototype, called Ensemble. Ensemble fol-
lowed Horus (written in C by Robbert VanRenesse), which followed ISIS (written by Ken Birman, also in C). En-
semble was written in OCaml, developed at INRIA, and is a functional language and related to ML. I never liked
the OCaml language, which in my opinion has a hideous syntax. Therefore I never got warm with Ensemble either.

However, Ensemble had a Java interface (implemented by a student in a semester project) which allowed me to
program in Java and use Ensemble underneath. The Java part would require that an Ensemble process was running
somewhere on the same machine, and would connect to it via a bidirectional pipe. The student had developed a
simple protocol for talking to the Ensemble engine, and extended the engine as well to talk back to Java.

However, I still needed to compile and install the Ensemble runtime for each different platform, which is exactly
why Java was developed in the first place: portability.

Therefore I started writing a simple framework (now JChannel), which would allow me to treat Ensemble as just
another group communication transport, which could be replaced at any time by a pure Java solution. And soon I
found myself working on a pure Java implementation of the group communication transport (now: ProtocolStack
). I figured that a pure Java implementation would have a much bigger impact that something written in Ensemble.
In the end I didn't spend much time writing scientific papers that nobody would read anyway (I guess I'm not a
good scientist, at least not a theoretical one), but rather code for JGroups, which could have a much bigger impact.
For me, knowing that real-life projects/products are using JGroups is much more satisfactory than having a paper
accepted at a conference/journal.

That's why, after my time was up, I left Cornell and academia altogether, and started a job in the industry: with

JBoss vi

Fujitsu Network Communications in Silicon Valley.

At around that time (May 2000), SourceForge had just opened its site, and I decided to use it for hosting JGroups. I
guess this was a major boost for JGroups because now other developers could work on the code. From then on, the
page hit and download numbers for JGroups have steadily risen.

In the fall of 2002, Sacha Labourey contacted me, letting me know that JGroups was being used by JBoss for their
clustering implementation. I joined JBoss in 2003 and have been working on JGroups and JBossCache. My goal is
to make JGroups the most widely used clustering software in Java ...

Bela Ban, San Jose, Aug 2002, Kreuzlingen Switzerland 2006

Foreword

JBoss vii

Acknowledgments
I want to thank all contributors to JGroups, present and past, for their work. Without you, this project would never
have taken off the ground.

I also want to thank Ken Birman and Robbert VanRenesse for many fruitful discussions of all aspects of group
communication in particular and distributed systems in general.

I want to dedicate this manual to Jeannette and Michelle.

JBoss viii

1
Overview

Group communication uses the terms group and member. Members are part of a group. In the more common ter-
minology, a member is a node and a group is a cluster. We use these terms interchangeably.

A node is a process, residing on some host. A cluster can have one or more nodes belonging to it. There can be
multiple nodes on the same host, and all may or may not be part of the same cluster.

JGroups is toolkit for reliable group communication. Processes can join a group, send messages to all members or
single members and receive messages from members in the group. The system keeps track of the members in every
group, and notifies group members when a new member joins, or an existing member leaves or crashes. A group is
identified by its name. Groups do not have to be created explicitly; when a process joins a non-existing group, that
group will be created automatically. Member processes of a group can be located on the same host, within the same
LAN, or across a WAN. A member can be part of multiple groups.

The architecture of JGroups is shown in Figure 1.1.

Figure 1.1. The architecture of JGroups

JBoss 1

It consists of 3 parts: (1) the Channel used by application programmers to build reliable group communication ap-
plications, (2) the building blocks, which are layered on top of the channel and provide a higher abstraction level
and (3) the protocol stack, which implements the properties specified for a given channel.

This document describes how to install and use JGroups, ie. the Channel API and the building blocks. The targeted
audience is application programmers who want to use JGroups to build reliable distributed programs that need
group communication.

A channel is connected to a protocol stack. Whenever the application sends a message, the channel passes it on to
the protocol stack, which passes it to the topmost protocol. The protocol processes the message and the passes it on
to the protocol below it. Thus the message is handed from protocol to protocol until the bottom (transport) protocol
puts it on the network. The same happens in the reverse direction: the transport protocol listens for messages on the
network. When a message is received it will be handed up the protocol stack until it reaches the channel. The chan-
nel stores the message in a queue until the application consumes it.

When an application connects to the channel, the protocol stack will be started, and when it disconnects the stack
will be stopped. When the channel is closed, the stack will be destroyed, releasing its resources.

The following three sections give an overview of channels, building blocks and the protocol stack.

1.1. Channel

To join a group and send messages, a process has to create a channel and connect to it using the group name (all
channels with the same name form a group). The channel is the handle to the group. While connected, a member
may send and receive messages to/from all other group members. The client leaves a group by disconnecting from
the channel. A channel can be reused: clients can connect to it again after having disconnected. However, a channel
allows only 1 client to be connected at a time. If multiple groups are to be joined, multiple channels can be created
and connected to. A client signals that it no longer wants to use a channel by closing it. After this operation, the
channel cannot be used any longer.

Each channel has a unique address. Channels always know who the other members are in the same group: a list of
member addresses can be retrieved from any channel. This list is called a view. A process can select an address
from this list and send a unicast message to it (also to itself), or it may send a multicast message to all members of
the current view (also including itself). Whenever a process joins or leaves a group, or when a crashed process has
been detected, a new view is sent to all remaining group members. When a member process is suspected of having
crashed, a suspicion message is received by all non-faulty members. Thus, channels receive regular messages, view
messages and suspicion messages. A client may choose to turn reception of views and suspicions on/off on a chan-
nel basis.

Channels are similar to BSD sockets: messages are stored in a channel until a client removes the next one
(pull-principle). When no message is currently available, a client is blocked until the next available message has
been received.

Note that the push approach to receiving messages and views is preferred. This involves setting a Receiver in the
channel and getting callbacks invoked by JGroups whenever a message or view is received. The current pull ap-
proach (JChannel.receive() method) has been deprecated in 2.8 and will be removed in 3.0.

There is currently only one implementation of Channel: JChannel.

Overview

JBoss 2

The properties of a channel are typically defined in an XML file, but JGroups also allows for configuration through
simple strings, URIs, DOM trees or even programmatically.

The Channel API and its related classes is described in Chapter 3.

1.2. Building Blocks

Channels are simple and primitive. They offer the bare functionality of group communication, and have on purpose
been designed after the simple model of BSD sockets, which are widely used and well understood. The reason is
that an application can make use of just this small subset of JGroups, without having to include a whole set of
sophisticated classes, that it may not even need. Also, a somewhat minimalistic interface is simple to understand: a
client needs to know about 12 methods to be able to create and use a channel (and oftentimes will only use 3-4
methods frequently).

Channels provide asynchronous message sending/reception, somewhat similar to UDP. A message sent is essen-
tially put on the network and the send() method will return immediately. Conceptual requests, or responses to pre-
vious requests, are received in undefined order, and the application has to take care of matching responses with re-
quests.

Also, an application has to actively retrieve messages from a channel (pull-style); it is not notified when a message
has been received. Note that pull-style message reception often needs another thread of execution, or some form of
event-loop, in which a channel is periodically polled for messages.

JGroups offers building blocks that provide more sophisticated APIs on top of a Channel. Building blocks either
create and use channels internally, or require an existing channel to be specified when creating a building block.
Applications communicate directly with the building block, rather than the channel. Building blocks are intended to
save the application programmer from having to write tedious and recurring code, e.g. request-response correlation.

Building blocks are described in Chapter 4.

1.3. The Protocol Stack

The protocol stack containins a number of protocol layers in a bidirectional list. All messages sent and received
over the channel have to pass through all protocols. Every layer may modify, reorder, pass or drop a message, or
add a header to a message. A fragmentation layer might break up a message into several smaller messages, adding
a header with an id to each fragment, and re-assemble the fragments on the receiver's side.

The composition of the protocol stack, i.e. its layers, is determined by the creator of the channel: an XML file
defines the layers to be used (and the parameters for each layer). The configuration is used to create the stack, de-
pending on the protocol names given in the property.

Knowledge about the protocol stack is not necessary when only using channels in an application. However, when
an application wishes to ignore the default properties for a protocol stack, and configure their own stack, then
knowledge about what the individual layers are supposed to do is needed. Although it is syntactically possible to
stack any layer on top of each other (they all have the same interface), this wouldn't make sense semantically in
most cases.

Overview

JBoss 3

1.4. Header

A header is a custom bit of information that can be added to each message. JGroups uses headers extensively, for
example to add sequence numbers to each message (NAKACK and UNICAST), so that those messages can be de-
livered in the order in which they were sent.

1.5. Event

Events are means by which JGroups protcols can talk to each other. Contrary to Messages, which travel over the
network between group members, events only travel up and down the stack.

Overview

JBoss 4

2
Installation and Configuration

The installation refers to version 2.8 of JGroups. Refer to the installation instructions that are shipped with JGroups
for details.

Note that these instructions are also available in the JGroups distribution (INSTALL.HTML).

JGroups comes in a binary and a source version: the binary version is JGroups-2.x.x.bin.zip, the source version
is JGroups-2.x.x.src.zip. The binary version contains the JGroups JAR file, plus a number of JARs needed by
JGroups. The source version contains all source files, plus several JAR files needed by JGroups, e.g. ANT to build
JGroups from source.

2.1. Requirements

• JGroups 2.5 requires JDK 1.5 or higher. Version 2.9 requires JDK 1.6 or higher.

• There is no JNI code present so JGroups should run on all platforms.

• If you want to generate HTML-based test reports from the unittests, then xalan.jar needs to be in the
CLASSPATH (also available in the lib directory)

2.2. Installing the binary distribution

The binary version contains

1. jgroups-all.jar: the JGroups library including the demos

2. CREDITS: list of contributors

3. INSTALL.html: this file

4. log4j.jar. This JAR is optional, for example if JDK logging is used, we don't need it. Note that commons-log-
ging is not a requirement any more since version 2.8.

Place the JAR files somewhere in your CLASSPATH, and you're ready to start using JGroups.

2.3. Installing the source distribution

The source version consists of the following directories and files:

JBoss 5

[1] http://jakarta.apache.org/ant/
[2] http://xml.apache.org/

1. src: the sources

2. test: unit and stress tests

3. conf: configuration files needed by JGroups, plus default protocol stack definitions

4. doc: documentation

5. lib: various JARs needed to build and run JGroups:

a. Ant [1] JARs: used to build JGroups. If you already have Ant installed, you won't need these files

b. xalan.jar [2]: to format the output of the JUnit tests using an XSLT converter to HTML

c. log4j.jar

d. etc

2.4. Building JGroups (source distribution only)

1. Unzip the source distribution, e.g. unzip JGroups-2.x.x.src.zip. This will create the JGroups-2.x.x directory
(root directory) under the current directory.

2. cd to the root directory

3. Modify build.properties if you want to use a Java compiler other than javac (e.g. jikes), or if you want to
change the interface JGroups uses for sending and receiving messages

4. On UNIX systems use build.sh, on Windows build.bat: $> ./build.sh compile

5. This will compile all Java files (into the classes directory).

6. To generate the JARs: $> ./build.sh jar

7. This will generate the following JAR files in the dist directory:

• jgroups-core.jar - the core JGroups library without unit tests and demos

• jgroups-all.jar - the complete JGroups library including demos and unit tests

8. The CLASSPATH now has to be set accordingly: the following directories and/or JARs have to be included:

a. <JGroups rootdir>/classes

b. <JGroups rootdir>/conf

c. All needed JAR files in <JGroups rootdir>/lib . To build from sources, the two Ant JARs are required.

Installation and Configuration

JBoss 6

http://jakarta.apache.org/ant/
http://xml.apache.org/

To run unit tests, the JUnit (and possibly Xalan) JARs are needed.

9. To generate JavaDocs simple run $> ./build.sh javadoc and the Javadoc documentation will be generated
in the dist/javadoc directory

10. Note that - if you already have Ant installed on your system - you do not need to use build.sh or build.bat,
simply invoke ant on the build.xml file. To be able to invoked ant from any directory below the root directory,
place ANT_ARGS="-find build.xml -emacs" into the .antrc file in your home directory.

11. For more details on Ant see http://jakarta.apache.org/ant/.

2.5. Testing your Setup

To see whether your system can find the JGroups classes, execute the following command:

java org.jgroups.Version

or (from JGroups 2.2.8 on)

java -jar jgroups-all.jar

You should see the following output (more or less) if the class is found:

[mac] /Users/bela/JGroups$ java org.jgroups.Version

Version: 2.8.0.GA
CVS: $Id: installation.xml,v 1.10 2010/04/30 14:27:39 vlada Exp $

2.6. Running a Demo Program

To test whether JGroups works okay on your machine, run the following command twice:

java org.jgroups.demos.Draw

2 whiteboard windows should appear as shown in Figure 2.1.

Installation and Configuration

JBoss 7

http://jakarta.apache.org/ant/

Figure 2.1. Screenshot of 2 Draw instances

Both windows should show 2 in their title bars. This means that the two instances found each other and formed a
group.

When drawing in one window, the second instance should also be updated. As the default group transport uses IP
multicast, make sure that - if you want start the 2 instances in different subnets - IP multicast is enabled. If this is
not the case, the 2 instances won't find each other and the sample won't work.

You can change the properties of the demo to for example use a different transport if multicast doesn't work (it
should always work on the same machine). Please consult the documentation to see how to do this.

State transfer (see the section in the API later) can also be tested by passing the -state flag to Draw.

2.7. Using IP Multicasting without a network connection

Sometimes there isn't a network connection (e.g. DSL modem is down), or we want to multicast only on the local
machine. For this the loopback interface (typically lo) can be configured, e.g.

route add -net 224.0.0.0 netmask 240.0.0.0 dev lo

This means that all traffic directed to the 224.0.0.0 network will be sent to the loopback interface, which means it
doesn't need any network to be running. Note that the 224.0.0.0 network is a placeholder for all multicast addresses
in most UNIX implementations: it will catch all multicast traffic. This is an undocumented feature of /sbin/route
and may not work across all UNIX flavors. The above instructions may also work for Windows systems, but this
hasn't been tested. Note that not all systems allow multicast traffic to use the loopback interface.

Installation and Configuration

JBoss 8

[4] http://jira.jboss.com/jira/browse/JGRP

Typical home networks have a gateway/firewall with 2 NICs: the first (eth0) is connected to the outside world
(Internet Service Provider), the second (eth1) to the internal network, with the gateway firewalling/masquerading
traffic between the internal and external networks. If no route for multicast traffic is added, the default will be to
use the fdefault gateway, which will typically direct the multicast traffic towards the ISP. To prevent this (e.g. ISP
drops multicast traffic, or latency is too high), we recommend to add a route for multicast traffic which goes to the
internal network (e.g. eth1).

2.8. It doesn't work !

Make sure your machine is set up correctly for IP multicast. There are 2 test programs that can be used to detect
this: McastReceiverTest and McastSenderTest. Start McastReceiverTest, e.g.

java org.jgroups.tests.McastReceiverTest -mcast_addr 224.10.10.10 -port 5555

Then start McastSenderTest:

java org.jgroups.tests.McastSenderTest -mcast_addr 224.10.10.10 -port 5555

If you want to bind to a specific network interface card (NIC), use -bind_addr 192.168.0.2, where 192.168.0.2 is
the IP address of the NIC to which you want to bind. Use this parameter in both sender and receiver.

You should be able to type in the McastSenderTest window and see the output in the McastReceiverTest. If not, try
to use -ttl 32 in the sender. If this still fails, consult a system administrator to help you setup IP multicast correctly.
If you are the system administrator, look for another job :-)

Other means of getting help: there is a public forum on JIRA [4] for questions. Also consider subscribing to the
javagroups-users mailing list to discuss such and other problems.

2.9. The instances still don't find each other !

In this case we have to use a sledgehammer (running only under JDK 1.4. and higher): we can enable the above
sender and receiver test to use all available interfaces for sending and receiving. One of them will certainly be the
right one... Start the receiver as follows:

java org.jgroups.tests.McastReceiverTest1_4 -mcast_addr 228.8.8.8 -use_all_interfaces

The multicast receiver uses the 1.4 functionality to list all available network interfaces and bind to all of them
(including the loopback interface). This means that whichever interface a packet comes in on, we will receive it.
Now start the sender:

java org.jgroups.tests.McastSenderTest1_4 -mcast_addr 228.8.8.8 -use_all_interfaces

Installation and Configuration

JBoss 9

http://jira.jboss.com/jira/browse/JGRP

[5] http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/
[7] http://jira.jboss.com/jira/browse/JGRP

The sender will also determine the available network interfaces and send each packet over all interfaces.

This test can be used to find out which network interface to bind to when previously no packets were received. E.g.
when you see the following output in the receiver:

bash-2.03$ java org.jgroups.tests.McastReceiverTest1_4 -mcast_addr 228.8.8.8
-bind_addr 192.168.1.4

Socket=0.0.0.0/0.0.0.0:5555, bind interface=/192.168.168.4
dd [sender=192.168.168.4:5555]
dd [sender=192.168.168.1:5555]
dd [sender=192.168.168.2:5555]

you know that you can bind to any of the 192.168.168.{1,2,4} interfaces to receive your multicast packets. In this
case you would need to modify your protocol spec to include bind_addr=192.168.168.2 in UDP, e.g.
"UDP(mcast_addr=228.8.8.8;bind_addr=192.168.168.2):..." .

2.10. Problems with IPv6

Another source of problems might be the use of IPv6, and/or misconfiguration of /etc/hosts. If you communicate
between an IPv4 and an IPv6 host, and they are not able to find each other, try the
java.net.preferIP4Stack=true property, e.g.

java -Djava.net.preferIPv4Stack=true org.jgroups.demos.Draw -props /home/bela/udp.xml

JDK 1.4.1 uses IPv6 by default, although is has a dual stack, that is, it also supports IPv4. Here's [5] more details on
the subject.

2.11. Wiki

There is a wiki which lists FAQs and their solutions at http://www.jboss.org/wiki/Wiki.jsp?page=JGroups. It is fre-
quently updated and a useful companion to this user's guide.

2.12. I have discovered a bug !

If you think that you discovered a bug, submit a bug report on JIRA [7] or send email to javagroups-developers if
you're unsure about it. Please include the following information:

• Version of JGroups (java org.jgroups.Version)

Installation and Configuration

JBoss 10

http://java.sun.com/j2se/1.4/docs/guide/net/ipv6_guide/
http://www.jboss.org/wiki/Wiki.jsp?page=JGroups
http://jira.jboss.com/jira/browse/JGRP

• Platform (e.g. Solaris 8)

• Version of JDK (e.g. JDK 1.4.2_07)

• Stack trace. Use kill -3 PID on UNIX systems or CTRL-BREAK on windows machines

• Small program that reproduces the bug

2.13. Supported classes

JGroups project has been around since 2001. Over this time, some of the JGroups classes have been used in experi-
mental phases and have never been matured enough to be used in today's production releases. However, they were
not removed since some people used them in their products.

The following tables list unsupported and experimental classes. These classes are not actively maintained, and we
will not work to resolve potential issues you might find. Their final faith is not yet determined; they might even be
removed altogether in the next major release. Weight your risks if you decide to use them anyway.

2.13.1. Experimental

Table 2.1. Experimental

Package Class

org.jgroups.util TimeScheduler2

org.jgroups.util HashedTimingWheel

org.jgroups.util Proxy

org.jgroups.blocks GridOutputStream

org.jgroups.blocks GridInputStream

org.jgroups.blocks GridFile

org.jgroups.blocks ReplCache

org.jgroups.blocks PartitionedHashMap

org.jgroups.blocks Cache

org.jgroups.blocks GridFilesystem

org.jgroups.blocks.locking LockService

org.jgroups.mux Multiplexer

org.jgroups.mux MuxChannel

org.jgroups.client StompConnection

org.jgroups.protocols FD_ICMP

Installation and Configuration

JBoss 11

Package Class

org.jgroups.protocols STOMP

org.jgroups.protocols BSH

org.jgroups.protocols TUNNEL

org.jgroups.protocols SFC

org.jgroups.protocols UNICAST2

org.jgroups.protocols BPING

org.jgroups.protocols HTOTAL

org.jgroups.protocols CENTRAL_LOCK

org.jgroups.protocols RELAY

org.jgroups.protocols S3_PING

org.jgroups.protocols MERGE3

org.jgroups.protocols TCP_NIO

org.jgroups.protocols CENTRAL_EXECUTOR

org.jgroups.protocols SEQUENCER

org.jgroups.protocols FILE_PING

org.jgroups.protocols DAISYCHAIN

org.jgroups.protocols PEER_LOCK

org.jgroups.protocols PRIO

org.jgroups.protocols MERGEFAST

org.jgroups.protocols SCOPE

org.jgroups.protocols RATE_LIMITER

org.jgroups.protocols SMACK

2.13.2. Unsupported

Table 2.2. Unsupported

Package Class

org.jgroups.util HashedTimingWheel

org.jgroups.util Proxy

org.jgroups.blocks DistributedTree

Installation and Configuration

JBoss 12

Package Class

org.jgroups.blocks ReplicatedHashMap

org.jgroups.blocks DistributedQueue

org.jgroups.blocks DistributedLockManager

org.jgroups.blocks NotificationBus

org.jgroups.blocks ReplCache

org.jgroups.blocks ReplicatedTree

org.jgroups.blocks PartitionedHashMap

org.jgroups.blocks Cache

org.jgroups.client StompConnection

org.jgroups.protocols FD_SIMPLE

org.jgroups.protocols DELAY_JOIN_REQ

org.jgroups.protocols SIZE

org.jgroups.protocols BSH

org.jgroups.protocols DISCARD

org.jgroups.protocols EXAMPLE

org.jgroups.protocols HDRS

org.jgroups.protocols SHUFFLE

org.jgroups.protocols PERF_TP

org.jgroups.protocols FD_PING

org.jgroups.protocols MERGE3

org.jgroups.protocols TCP_NIO

org.jgroups.protocols DISCARD_PAYLOAD

org.jgroups.protocols DUPL

org.jgroups.protocols DELAY

org.jgroups.protocols SMACK

org.jgroups.protocols TRACE

org.jgroups.persistence PersistenceManager

org.jgroups.persistence DBPersistenceManager

org.jgroups.persistence PersistenceFactory

org.jgroups.persistence FilePersistenceManager

Installation and Configuration

JBoss 13

3
API

This chapter explains the classes available in JGroups that will be used by applications to build reliable group com-
munication applications. The focus is on creating and using channels.

Information in this document may not be up-to-date, but the nature of the classes in the JGroups toolkit described
here is the same. For the most up-to-date information refer to the Javadoc-generated documentation in the doc/

javadoc directory.

All of the classes discussed below reside in the org.jgroups package unless otherwise mentioned.

3.1. Utility classes

The org.jgroups.util.Util class contains a collection of useful functionality which cannot be assigned to any
particular package.

3.1.1. objectToByteBuffer(), objectFromByteBuffer()

The first method takes an object as argument and serializes it into a byte buffer (the object has to be serializable or
externalizable). The byte array is then returned. This method is often used to serialize objects into the byte buffer of
a message. The second method returns a reconstructed object from a buffer. Both methods throw an exception if
the object cannot be serialized or unserialized.

3.2. Interfaces

These interfaces are used with some of the APIs presented below, therefore they are listed first.

3.2.1. MessageListener

Contrary to the pull-style of channels, some building blocks (e.g. PullPushAdapter) provide an event-like push-
style message delivery model. In this case, the entity to be notified of message reception needs to provide a call-
back to be invoked whenever a message has been received. The MessageListener interface below provides a meth-
od to do so:

public interface MessageListener {
public void receive(Message msg);
byte[] getState();
void setState(byte[] state);

}

JBoss 14

1It could be that the member is suspected falsely, in which case the next view would still contain the suspected member (there is currently no
unsuspect() method

Method receive() will be called when a message is received. The getState() and setState() methods are used
to fetch and set the group state (e.g. when joining). Refer to Section 3.6.13 for a discussion of state transfer.

3.2.2. ExtendedMessageListener

JGroups release 2.3 introduced ExtendedMessageListener enabling partial state transfer (refer to Section 3.6.15)
while release 2.4 further expands ExtendedMessageListener with streaming state transfer callbacks:

public interface ExtendedMessageListener extends MessageListener {
byte[] getState(String state_id);
void setState(String state_id, byte[] state);

/*** since JGroups 2.4 *****/
void getState(OutputStream ostream);
void getState(String state_id, OutputStream ostream);
void setState(InputStream istream);
void setState(String state_id, InputStream istream);

}

3.2.3. MembershipListener

The MembershipListener interface is similar to the MessageListener interface above: every time a new view, a
suspicion message, or a block event is received, the corresponding method of the class implementing Membership-

Listener will be called.

public interface MembershipListener {
public void viewAccepted(View new_view);
public void suspect(Object suspected_mbr);
public void block();

}

Oftentimes the only method containing any functionality will be viewAccepted() which notifies the receiver that a
new member has joined the group or that an existing member has left or crashed. The suspect() callback is in-
voked by JGroups whenever a member if suspected of having crashed, but not yet excluded 1.

The block() method is called to notify the member that it will soon be blocked sending messages. This is done by
the FLUSH protocol, for example to ensure that nobody is sending messages while a state transfer is in progress.
When block() returns, any thread sending messages will be blocked, until FLUSH unblocks the thread again, e.g.
after the state has been transferred successfully.

Therefore, block() can be used to send pending messages or complete some other work.

Note that block() should be brief, or else the entire FLUSH protocol is blocked.

Sending messages in callbacks

Note that anything that could block should not be done in a callback. This includes sending of messages; if

API

JBoss 15

we have FLUSH on the stack, and send a message in a viewAccepted() callback, then the following hap-
pens: the FLUSH protocol blocks all (multicast) messages before installing a view, then installs the view,
then unblocks. However, because installation of the view triggers the viewAccepted() callback, sending of
messages inside of viewAccepted() will block. This in turn blocks the viewAccepted() thread, so the flush
will never return !

If we need to send a message in a callback, the sending should be done on a separate thread, or a timer task
should be submitted to the timer.

3.2.4. ExtendedMembershipListener

The ExtendedMembershipListener interface extends MembershipListener:

public interface ExtendedMembershipListener extends MembershipListener {
public void unblock();

}

The unblock() method is called to notify the member that the FLUSH protocol has completed and the member can
resume sending messages. If the member did not stop sending messages on block(), FLUSH simply blocked them
and will resume, so no action is required from a member. Implementation of the unblock() callback is optional.

3.2.5. ChannelListener

public interface ChannelListener {
void channelConnected(Channel channel);
void channelDisconnected(Channel channel);
void channelClosed(Channel channel);
void channelShunned(); // deprecated in 2.8
void channelReconnected(Address addr); // deprecated in 2.8

}

A class implementing ChannelListener can use the Channel.setChannelListener() method to register with a
channel to obtain information about state changes in a channel. Whenever a channel is closed, disconnected or
opened a callback will be invoked.

3.2.6. Receiver

public interface Receiver extends MessageListener, MembershipListener {
}

A Receiver can be used to receive messages and view changes in push-style; rather than having to pull these events
from a channel, they will be dispatched to the receiver as soon as they have been received. This saves one thread
(application thread, pulling messages from a channel, or the PullPushAdapter thread

Note that JChannel.receive() has been deprecated and will be removed in 3.0. The preferred way of receiving

API

JBoss 16

messages is now via a Receiver callback (push style).

3.2.7. ExtendedReceiver

public interface ExtendedReceiver extends ExtendedMessageListener, MembershipListener {
}

This is a receiver who will be able to handle partial state transfer

3.2.8. ReceiverAdapter and ExtendedReceiverAdapter

These classes implement Receiver and ExtendedReceiver. When implementing a callback, one can simply extend
ReceiverAdapter and overwrite receive() in order to not having to implement all callbacks of the interface.

Merging of Extended interfaces with their super interfaces

The Extended- interfaces (ExtendedMessageListener, ExtendedReceiver) will be merged with their parents
in the 3.0 release of JGroups. The reason is that this will create an API backwards incompatibility, which
we didn't want to introduce in the 2.x series.

3.3. Address

Each member of a group has an address, which uniquely identifies the member. The interface for such an address is
Address, which requires concrete implementations to provide methods for comparison and sorting of addresses,
and for determination whether the address is a multicast address. JGroups addresses have to implement the follow-
ing interface:

public interface Address extends Externalizable, Comparable, Cloneable {
boolean isMulticastAddress();
int size();

}

Please never use implementations of Address directly; Address should always be used as an opaque identifier of a
cluster node !

Actual implementations of addresses are often generated by the bottommost protocol layer (e.g. UDP or TCP). This
allows for all possible sorts of addresses to be used with JGroups, e.g. ATM.

In JChannel, it is the IP address of the host on which the stack is running and the port on which the stack is receiv-
ing incoming messages; it is represented by the concrete class org.jgroups.stack.IpAddress. Instances of this
class are only used within the JChannel protocol stack; users of a channel see addresses (of any kind) only as Ad-
dresses. Since an address uniquely identifies a channel, and therefore a group member, it can be used to send mes-
sages to that group member, e.g. in Messages (see next section).

In 2.8, the default implementation of Address was changed from IpAddress to org.jgroups.util.UUID.

API

JBoss 17

3.4. Message

Data is sent between members in the form of messages (org.jgroups.Message). A message can be sent by a
member to a single member , or to all members of the group of which the channel is an endpoint. The structure of a
message is shown in Figure 3.1 .

Figure 3.1. Structure of a message

A message contains 5 fields:

Destination address
The address of the receiver. If null , the message will be sent to all current group members

Source address
The address of the sender. Can be left null , and will be filled in by the transport protocol (e.g. UDP) before
the message is put on the network

Flags
This is one byte used for flags. The currently recognized flags are OOB, LOW_PRIO and HIGH_PRIO. See
the discussion on the concurrent stack for OOB.

Payload
The actual data (as a byte buffer). The Message class contains convenience methods to set a serializable object
and to retrieve it again, using serialization to convert the object to/from a byte buffer.

Headers
A list of headers that can be attached to a message. Anything that should not be in the payload can be attached
to a message as a header. Methods putHeader() , getHeader() and removeHeader() of Message can be used
to manipulate headers.

A message is similar to an IP packet and consists of the payload (a byte buffer) and the addresses of the sender and
receiver (as Addresses). Any message put on the network can be routed to its destination (receiver address), and
replies can be returned to the sender's address.

A message usually does not need to fill in the sender's address when sending a message; this is done automatically
by the protocol stack before a message is put on the network. However, there may be cases, when the sender of a
message wants to give an address different from its own, so that for example, a response should be returned to
some other member.

API

JBoss 18

The destination address (receiver) can be an Address, denoting the address of a member, determined e.g. from a
message received previously, or it can be null , which means that the message will be sent to all members of the
group. A typical multicast message, sending string "Hello" to all members would look like this:

Message msg=new Message(null, null, "Hello");
channel.send(msg);

3.5. View

A View (View) is a list of the current members of a group. It consists of a ViewId , which uniquely identifies the
view (see below), and a list of members. Views are set in a channel automatically by the underlying protocol stack
whenever a new member joins or an existing one leaves (or crashes). All members of a group see the same se-
quence of views.

Note that there is a comparison function which orders all the members of a group in the same way. Usually, the
first member of the list is the coordinator (the one who emits new views). Thus, whenever the membership
changes, every member can determine the coordinator easily and without having to contact other members.

The code below shows how to send a (unicast) message to the first member of a view (error checking code omit-
ted):

View view=channel.getView();
Address first=view.getMembers().first();
Message msg=new Message(first, null, "Hello world");
channel.send(msg);

Whenever an application is notified that a new view has been installed (e.g. by Receiver.viewAccepted(), the
view is already set in the channel. For example, calling Channel.getView() in a viewAccepted() callback would
return the same view (or possibly the next one in case there has already been a new view !).

3.5.1. ViewId

The ViewId is used to uniquely number views. It consists of the address of the view creator and a sequence num-
ber. ViewIds can be compared for equality and put in a hashtable as they implement equals() and hashCode() meth-
ods.2

3.5.2. MergeView

Whenever a group splits into subgroups, e.g. due to a network partition, and later the subgroups merge back togeth-
er, a MergeView instead of a View will be received by the application. The MergeView class is a subclass of View
and contains as additional instance variable the list of views that were merged. As an example if the group denoted
by view V1:(p,q,r,s,t) split into subgroups V2:(p,q,r) and V2:(s,t) , the merged view might be
V3:(p,q,r,s,t) . In this case the MergeView would contains a list of 2 views: V2:(p,q,r) and V2:(s,t) .

API

JBoss 19

3.6. JChannel

In order to join a group and send messages, a process has to create a channel. A channel is like a socket. When a
client connects to a channel, it gives the the name of the group it would like to join. Thus, a channel is (in its con-
nected state) always associated with a particular group. The protocol stack takes care that channels with the same
group name find each other: whenever a client connects to a channel given group name G, then it tries to find exist-
ing channels with the same name, and joins them, resulting in a new view being installed (which contains the new
member). If no members exist, a new group will be created.

A state transition diagram for the major states a channel can assume are shown in Figure 3.2 .

Figure 3.2. Channel states

When a channel is first created, it is in the unconnected state. An attempt to perform certain operations which are
only valid in the connected state (e.g. send/receive messages) will result in an exception. After a successful connec-
tion by a client, it moves to the connected state. Now channels will receive messages, views and suspicions from
other members and may send messages to other members or to the group. Getting the local address of a channel is
guaranteed to be a valid operation in this state (see below). When the channel is disconnected, it moves back to the
unconnected state. Both a connected and unconnected channel may be closed, which makes the channel unusable
for further operations. Any attempt to do so will result in an exception. When a channel is closed directly from a
connected state, it will first be disconnected, and then closed.

The methods available for creating and manipulating channels are discussed now.

API

JBoss 20

3.6.1. Creating a channel

A channel can be created in two ways: an instance of a subclass of Channel is created directly using its public con-
structor (e.g. new JChannel()), or a channel factory is created, which -- upon request -- creates instances of chan-
nels. We will only look at the first method of creating channel: by direct instantiation.

The public constructor of JChannel looks as follows:

public JChannel(String props) throws ChannelException {}

It creates an instance of JChannel . The props argument points to an XML file containing the configuration of the
protocol stack to be used. This can be a String, but there are also other constructors which take for example a DOM
element or a URL (more on this later).

If the props argument is null, the default properties will be used. An exception will be thrown if the channel cannot
be created. Possible causes include protocols that were specified in the property argument, but were not found, or
wrong parameters to protocols.

For example, the Draw demo can be launched as follows:

java org.javagroups.demos.Draw -props file:/home/bela/udp.xml

or

java org.javagroups.demos.Draw -props http://www.jgroups.org/udp.xml

In the latter case, an application downloads its protocol stack specification from a server, which allows for central
administration of application properties.

A sample XML configuration looks like this (edited from udp.xml):

<config>
<UDP

mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"
mcast_port="${jgroups.udp.mcast_port:45588}"
discard_incompatible_packets="true"
max_bundle_size="60000"
max_bundle_timeout="30"
ip_ttl="${jgroups.udp.ip_ttl:2}"
enable_bundling="true"
thread_pool.enabled="true"
thread_pool.min_threads="1"
thread_pool.max_threads="25"
thread_pool.keep_alive_time="5000"
thread_pool.queue_enabled="false"
thread_pool.queue_max_size="100"
thread_pool.rejection_policy="Run"
oob_thread_pool.enabled="true"
oob_thread_pool.min_threads="1"
oob_thread_pool.max_threads="8"

API

JBoss 21

oob_thread_pool.keep_alive_time="5000"
oob_thread_pool.queue_enabled="false"
oob_thread_pool.queue_max_size="100"
oob_thread_pool.rejection_policy="Run"/>

<PING timeout="2000"
num_initial_members="3"/>

<MERGE2 max_interval="30000"
min_interval="10000"/>

<FD_SOCK/>
<FD timeout="10000" max_tries="5" />
<VERIFY_SUSPECT timeout="1500" />
<BARRIER />
<pbcast.NAKACK

use_mcast_xmit="false" gc_lag="0"
retransmit_timeout="300,600,1200,2400,4800"
discard_delivered_msgs="true"/>

<UNICAST timeout="300,600,1200,2400,3600"/>
<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

max_bytes="400000"/>
<VIEW_SYNC avg_send_interval="60000" />
<pbcast.GMS print_local_addr="true" join_timeout="3000"

view_bundling="true"/>
<FC max_credits="20000000"

min_threshold="0.10"/>
<FRAG2 frag_size="60000" />
<pbcast.STATE_TRANSFER />

</config>

A stack is wrapped by <config> and </config> elements and lists all protocols from bottom (UDP) to top
(STATE_TRANSFER). Each element defines one protocol.

Each protocol is implemented as a Java class. When a protocol stack is created based on the above XML configura-
tion, the first element ("UDP") becomes the bottom-most layer, the second one will be placed on the first, etc: the
stack is created from the bottom to the top.

Each element has to be the name of a Java class that resides in the org.jgroups.stack.protocols package. Note
that only the base name has to be given, not the fully specified class name (UDP instead of
org.jgroups.stack.protocols.UDP). If the protocol class is not found, JGroups assumes that the name given is a
fully qualified classname and will therefore try to instantiate that class. If this does not work an exception is
thrown. This allows for protocol classes to reside in different packages altogether, e.g. a valid protocol name could
be com.sun.eng.protocols.reliable.UCAST .

Each layer may have zero or more arguments, which are specified as a list of name/value pairs in parentheses dir-
ectly after the protocol name. In the example above, UDP is configured with some options, one of them being the
IP multicast address (mcast_addr) which is set to 228.10.10.10, or to the value of the system property
jgroups.udp.mcast_addr, if set.

Note that all members in a group have to have the same protocol stack.

3.6.1.1. Programmatic creation

Usually, channels are created by passing the name of an XML configuration file to the JChannel() constructor. On
top of this declarative configuration, JGroups provides an API to create a channel programmatically. The way to do
this is to first create a JChannel, then an instance of ProtocolStack, then add all desired protocols to the stack and
finally calling init() on the stack to set it up. The rest, e.g. calling JChannel.connect() is the same as with the declar-

API

JBoss 22

ative creation.

An example of how to programmatically create a channel is shown below (copied from ProgrammaticChat):

JChannel ch=new JChannel(false); // 1
ProtocolStack stack=new ProtocolStack(); // 2
ch.setProtocolStack(stack); // 3
stack.addProtocol(new UDP().setValue("bind_addr", InetAddress.getByName("192.168.1.5")))

.addProtocol(new PING())

.addProtocol(new MERGE2())

.addProtocol(new FD_SOCK())

.addProtocol(new FD_ALL().setValue("timeout", 12000).setValue("interval", 3000))

.addProtocol(new VERIFY_SUSPECT())

.addProtocol(new BARRIER())

.addProtocol(new NAKACK())

.addProtocol(new UNICAST2())

.addProtocol(new STABLE())

.addProtocol(new GMS())

.addProtocol(new UFC())

.addProtocol(new MFC())

.addProtocol(new FRAG2()); // 4
stack.init(); // 5

ch.setReceiver(new ReceiverAdapter() {
public void viewAccepted(View new_view) {

System.out.println("view: " + new_view);
}

public void receive(Message msg) {
System.out.println(msg.getObject() + " [" + msg.getSrc() + "]");

}
});

ch.connect("ChatCluster");

for(;;) {
String line=Util.readStringFromStdin(": ");
ch.send(null, null, line);

}

First a JChannel is created. The 'false' argument tells the channel not to create a ProtocolStack. This is needed be-
cause we will create one ourselves later (2) and set it in the channel (3).

Next, all protocols are added to the stack. Note that the order is from bottom (transport protocol) to top. So UDP as
transport is added first, then PING and so on, until FRAG2, which is the top protocol. Every protocol can be con-
figured via setters, but there is also a generic setValue(String attr_name, Object value), which can be used to con-
figure protocols as well, as shown in the example.

Once the stack is configured, we call ProtocolStack.init() to link all protocols correctly and to call init() in every
protocol instance. After this, the channel is ready to be used and all subsequent actions (e.g. connect()) can be ex-
ecuted. When the init() method returns, we have essentially the equivalent of new JChannel(config_file).

3.6.2. Setting options

A number of options can be set in a channel. To do so, the following method is used:

API

JBoss 23

public void setOpt(int option, Object value);

Arguments are the options number and a value. The following options are currently recognized:

Channel.BLOCK

The argument is a boolean object. If true, block messages will be received.

Channel.LOCAL

Local delivery. The argument is a boolean value. If set to true, a member will receive all messages it sent to it-
self. Otherwise, all messages sent by itself will be discarded. This option allows to send messages to the group,
without receiving a copy. Default is true (members will receive their own copy of messages multicast to the
group).

Channel.AUTO_RECONNECT

When set to true, a shunned channel will leave the group and then try to automatically re-join. Default is false.
Note that in 2.8, shunning has been removed, therefore this option has been deprecated.

Channel.AUTO_GETSTATE

When set to true a shunned channel, after reconnection, will attempt to fetch the state from the coordinator.
This requires AUTO_RECONNECT to be true as well. Default is false. Note that in 2.8, shunning has been re-
moved, therefore this option has been deprecated.

The equivalent method to get options is getOpt():

public Object getOpt(int option);

Given an option, the current value of the option is returned.

Deprecating options in 3.0

Most of the options (except LOCAL) have been deprecated in 2.6.x and will be removed in 3.0.

3.6.3. Giving the channel a logical name

A channel can be given a logical name which is then used instead of the channel's address. A logical name might
show the function of a channel, e.g. "HostA-HTTP-Cluster", which is more legible than a UUID
3c7e52ea-4087-1859-e0a9-77a0d2f69f29.

For example, when we have 3 channels, using logical names we might see a view "{A,B,C}", which is nicer than
"{56f3f99e-2fc0-8282-9eb0-866f542ae437, ee0be4af-0b45-8ed6-3f6e-92548bfa5cde,
9241a071-10ce-a931-f675-ff2e3240e1ad} !"

If no logical name is set, JGroups generates one, using the hostname and a random number, e.g. linux-3442. If this
is not desired and the UUIDs should be shown, use system property -Djgroups.print_uuids=true.

The logical name can be set using:

API

JBoss 24

public void setName(String logical_name);

This should be done before connecting a channel. Note that the logical name stays with a channel until the channel
is destroyed, whereas a UUID is created on each connection.

When JGroups starts, it prints the logical name and the associated physical address(es):

GMS: address=mac-53465, cluster=DrawGroupDemo, physical address=192.168.1.3:49932

** View=[mac-53465|0] [mac-53465]

The logical name is mac-53465 and the physical address is 192.168.1.3:49932. The UUID is not shown here.

3.6.4. Generating custom addresses

Since 2.12 address generation is pluggable. This means that an application can determine what kind of addresses it
uses. The default address type is UUID, and since some protocols use UUID, it is recommended to provide custom
classes as subclasses of UUID.

This can be used to for example pass additional data around with an address, for example information about the
location of the node to which the address is assigned. Note that methods equals(), hashCode() and compare() of the
UUID super class should not be changed.

To use custom addresses, the following things have to be done:

• Write an implementation of org.jgroups.stack.AddressGenerator

• For any class CustomAddress, it will need to get registered with the ClassConfigurator in order to marshal it
correctly:

class CustomAddress extends UUID {
static {

ClassConfigurator.add((short)8900, CustomAddress.class);
}

}

Note that the ID should be chosen such that it doesn't collide with any IDs defined in jg-magic-map.xml.

• Set the address generator in JChannel: setAddressGenerator(AddressGenerator). This has to be done before the
channel is connected

An example of a subclass is org.jgroups.util.PayloadUUID.

3.6.5. Connecting to a channel

When a client wants to join a group, it connects to a channel giving the name of the group to be joined:

API

JBoss 25

3Local delivery can be turned on/off using setOpt() .
4This is managed internally however, and an application programmer does not need to be concerned about it.
getAddress()

public void connect(String clustername) throws ChannelClosed;

The cluster name is a string, naming the cluster to be joined. All channels that are connected to the same name form
a cluster. Messages multicast on any channel in the cluster will be received by all members (including the one who
sent it 3).

The method returns as soon as the group has been joined successfully. If the channel is in the closed state (see Fig-
ure 3.2), an exception will be thrown. If there are no other members, i.e. no other member has connected to a
group with this name, then a new group is created and the member joined. The first member of a group becomes its
coordinator . A coordinator is in charge of multicasting new views whenever the membership changes 4 .

3.6.6. Connecting to a channel and getting the state in one operation

Clients can also join a cluster group and fetch cluster state in one operation. The best way to conceptualize connect
and fetch state connect method is to think of it as an invocation of regular connect and getstate methods executed in
succession. However, there are several advantages of using connect and fetch state connect method over regular
connect. First of all, underlying message exchange is heavily optimized, especially if the flush protocol is used in
the stack. But more importantly, from clients perspective, connect and join operations become one atomic opera-
tion.

public void connect(string cluster_name, address target,
string state_id, long timeout)

throws ChannelException;

Just as in regular connect method cluster name represents a cluster to be joined. Address parameter indicates a
cluster member to fetch state from. Null address parameter indicates that state should be fetched from the cluster
coordinator. If state should be fetched from a particular member other than coordinator clients can provide an ad-
dress of that member. State id used for partial state transfer while timeout bounds entire join and fetch operation.

3.6.7. Getting the local address and the group name

Method getLocalAddress() returns the local address of the channel5. In the case of JChannel , the local address is
generated by the bottom-most layer of the protocol stack when the stack is connected to. That means that -- de-
pending on the channel implementation -- the local address may or may not be available when a channel is in the
unconnected state.

public Address getLocalAddress(); // use getAddress() with 2.8.0+

Method getClusterName() returns the name of the cluster in which the channel is a member:

public String getClusterName();

API

JBoss 26

Again, the result is undefined if the channel is in the unconnected or closed state.

3.6.8. Getting the current view

The following method can be used to get the current view of a channel:

public View getView();

This method does not retrieve a new view (message) from the channel, but only returns the current view of the
channel. The current view is updated every time a view message is received: when method receive() is called,
and the return value is a view, before the view is returned, it will be installed in the channel, i.e. it will become the
current view.

Calling this method on an unconnected or closed channel is implementation defined. A channel may return null, or
it may return the last view it knew of.

3.6.9. Sending a message

Once the channel is connected, messages can be sent using the send() methods:

public void send(Message msg) throws ChannelNotConnected, ChannelClosed;
public void send(Address dst, Address src, Object obj)

throws ChannelNotConnected, ChannelClosed;

The first send() method has only one argument, which is the message to be sent. The message's destination should
either be the address of the receiver (unicast) or null (multicast). When it is null, the message will be sent to all
members of the group (including itself). The source address may be null; if it is, it will be set to the channel's ad-
dress (so that recipients may generate a response and send it back to the sender).

The second send() method is a helper method and uses the former method internally. It requires the address of re-
ceiver and sender and an object (which has to be serializable), constructs a Message and sends it.

If the channel is not connected, or was closed, an exception will be thrown upon attempting to send a message.

Here's an example of sending a (multicast) message to all members of a group:

Map data; // any serializable data
try {

channel.send(null, null, data);
}
catch(Exception ex) {

// handle errors
}

The null value as destination address means that the message will be sent to all members in the group. The sender's
address will be filled in by the bottom-most protocol. The payload is a hashmap, which will be serialized into the

API

JBoss 27

message's buffer and unserialized at the receiver's end. Alternatively, any other means of generating a byte buffer
and setting the message's buffer to it (e.g. using Message.setBuffer()) would also work.

Here's an example of sending a (unicast) message to the first member (coordinator) of a group:

Map data;
try {

Address receiver=channel.getView().getMembers().first();
channel.send(receiver, null, data);

}
catch(Exception ex) {

// handle errors
}

It creates a Message with a specific address for the receiver (the first member of the group). Again, the sender's ad-
dress can be left null as it will be filled in by the bottom-most protocol.

3.6.10. Receiving a message

Method receive() is used to receive messages, views, suspicions and blocks:

public Object receive(long timeout) throws ChannelNotConnected,
ChannelClosed, Timeout;

A channel receives messages asynchronously from the network and stores them in a queue. When receive() is
called, the next available message from the top of that queue is removed and returned. When there are no messages
on the queue, the method will block. If timeout is greater than 0, it will wait the specified number of milliseconds
for a message to be received, and throw a TimeoutException exception if none was received during that time. If
the timeout is 0 or negative, the method will wait indefinitely for the next available message.

Depending on the channel options (see Section 3.6.2), the following types of objects may be received:

Message
A regular message. To send a response to the sender, a new message can be created. Its destination address
would be the received message's source address. Method Message.makeReply() is a helper method to create a
response.

View
A view change, signalling that a member has joined, left or crashed. The application may or may not perform
some action upon receiving a view change (e.g. updating a GUI object of the membership, or redistributing a
load-balanced collaborative task to all members). Note that a longer action, or any action that blocks should be
performed in a separate thread. A MergeView will be received when 2 or more subgroups merged into one (see
Section 3.5.2 for details). Here, a possible state merge by the application needs to be done in a separate thread.

SuspectEvent
Notification of a member that is suspected. Method SuspectEvent.getMember() retrieves the address of the
suspected member. Usually this message will be followed by a view change.

API

JBoss 28

BlockEvent
The application has to stop sending messages. When the application has stopped sending messages, it needs to
acknowledge this message with a Channel.blockOk() method.

The BlockEvent reception can be used to complete pending tasks, e.g. send pending messages, but once Chan-
nel.blockOk() has been called, all threads that send messages (calling Channel.send() or Channel.down()) will
be blocked until FLUSH unblocks them.

UnblockEvent
The application can resume sending messages. Any previously messages blocked by FLUSH will be un-
blocked; when the UnblockEvent is received the channel has already been unblocked.

GetStateEvent
Received when the application's current state should be saved (for a later state transfer. A copy of the current
state should be made (possibly wrapped in a synchronized statement and returned calling method Chan-

nel.returnState() . If state transfer events are not enabled on the channel (default), then this event will never
be received. This message will only be received with the Virtual Synchrony suite of protocols (see the Pro-
grammer's Guide).

StreamingGetStateEvent
Received when the application's current state should be provided to a state requesting group member. If state
transfer events are not enabled on the channel (default), or if channel is not configured with pb-
cast.STREAMING_STATE_TRANSFER then this event will never be received.

SetStateEvent
Received as response to a getState(s) method call. The argument contains the state of a single member (
byte[]) or of all members (Vector). Since the state of a single member could also be a vector, the interpreta-
tion of the argument is left to the application.

StreamingSetStateEvent
Received at state requesting member when the state InputStream becomes ready for reading. If state transfer
events are not enabled on the channel (default), or if channel is not configured with pb-
cast.STREAMING_STATE_TRANSFER then this event will never be received.

The caller has to check the type of the object returned. This can be done using the instanceof operator, as follows:

Object obj=channel.receive(0); // wait forever
if(obj instanceof Message)

Message msg=(Message)obj;
else if(obj instanceof View)

View v=(View)obj;
else

; // don't handle suspicions or blocks

If for example views, suspicions and blocks are disabled, then the caller is guaranteed to only receive return values
of type Message . In this case, the return value can be cast to a Message directly, without using the instanceof op-
erator.

If the channel is not connected, or was closed, a corresponding exception will be thrown.

API

JBoss 29

The example below shows how to retrieve the "Hello world" string from a message:

Message msg; // received above
try {

String s=(String)msg.getObject(); // error if obj not Serializable
// alternative: s=new String(msg.getBuffer());

}
catch(Exception ex) {

// handle errors, e.g. casting error above)
}

The Message.getObject() method retrieves the message's byte buffer, converts it into a (serializable) object and re-
turns the object.

3.6.11. Using a Receiver to receive messages

Instead of pulling messages from a channel in an application thread, a Receiver can be registered with a channel.
This is the preferred and recommended way of receiving messages. In 3.0, the receive() method will be removed
from JChannel. All received messages, view changes and state transfer requests will invoke callbacks on the re-
gistered Receiver:

JChannel ch=new JChannel();
ch.setReceiver(new ExtendedReceiverAdapter() {

public void receive(Message msg) {
System.out.println("received message " + msg);

}
public void viewAccepted(View new_view) {

System.out.println("received view " + new_view);
}

});
ch.connect("bla");

The ExtendedReceiverAdapter class implements all callbacks of ExtendedReceiver with no-ops, in the example
above we override receive() and viewAccepted().

The advantage of using a Receiver is that the application doesn't have to waste 1 thread for pulling messages out of
a channel. In addition, the channel doesn't have to maintain an (unbounded) queue of messages/views, which can
quickly get large if the receiver cannot process messages fast enough, and the sender keeps sending messages.

Note
Note that the Channel.receive() method has been deprecated, and will be removed in 3.0. Use the Receiver
interface instead and register as a Receiver with Channel.setReceiver(Receiver r).

3.6.12. Peeking at a message

Instead of removing the next available message from the channel, peek() just returns a reference to the next mes-
sage, but does not remove it. This is useful when one has to check the type of the next message, e.g. whether it is a
regular message, or a view change. The signature of this method is not shown here, it is the same as for receive()
.

API

JBoss 30

6A member will never retrieve the state from itself !

Note
The peek() method has also been deprecated, and will be removed in 3.0.

3.6.13. Getting the group's state

A newly joined member may wish to retrieve the state of the group before starting work. This is done with get-

State(). This method returns the state of one member (in most cases, of the oldest member, the coordinator). It re-
turns true or false, depending on whether a valid state could be retrieved. For example, if a member is a singleton,
then calling this method would always return false 6 .

The actual state is returned as the return value of one of the subsequent receive() calls, in the form of a Set-

StateEvent object. If getState() returned true, then a valid state (non-null) will be returned, otherwise a null state
will be returned. Alternatively if an application uses MembershipListener (see Section 3.2.3) instead of pulling
messages from a channel, the getState() method will be invoked and a copy of the current state should be re-
turned. By the same token, setting a state would be accomplished by JGroups calling the setState() method of the
state fetcher.

The reason for not directly returning the state as a result of getState() is that the state has to be returned in the
correct position relative to other messages. Returning it directly would violate the FIFO properties of a channel,
and state transfer would not be correct.

The following code fragment shows how a group member participates in state transfers:

channel=new JChannel();
channel.connect("TestChannel");
boolean rc=channel.getState(null, 5000);

...

Object state, copy;
Object ret=channel.receive(0);
if(ret instanceof Message)

;
else if(ret instanceof GetStateEvent) {

// make a copy so that other msgs don't change the state
copy=copyState(state);
channel.returnState(Util.objectToByteBuffer(copy));

}
else if(ret instanceof SetStateEvent) {

SetStateEvent e=(SetStateEvent)ret;
state=e.getArg();

}

A JChannel has to be created whose stack includes the STATE_TRANSFER or pbcast.STATE_TRANSFER protocols (see
Chapter 5). Method getState() subsequently asks the channel to return the current state. If there is a current state
(there may not be any other members in the group !), then true is returned. In this case, one of the subsequent re-
ceive() method invocations on the channel will return a SetStateEvent object which contains the current state. In
this case, the caller sets its state to the one received from the channel.

Method receive() might return a GetStateEvent object, requesting the state of the member to be returned. In this
case, a copy of the current state should be made and returned using JChannel.returnState() . It is important to a)

API

JBoss 31

synchronize access to the state when returning it since other accesses may modify it while it is being returned and
b) make a copy of the state since other accesses after returning the state may still be able to modify it ! This is pos-
sible because the state is not immediately returned, but travels down the stack (in the same address space), and a
reference to it could still alter it.

3.6.14. Getting the state with a Receiver

As an alternative to handling the GetStateEvent and SetStateEvent events, and calling Channel.returnState(), a Re-
ceiver could be used. The example above would look like this:

class MyReceiver extends ReceiverAdapter {
final Map m=new HashMap();
public byte[] getState() {

// so nobody else can modify the map while we serialize it
synchronized(m) {

byte[] state=Util.objectToByteBuffer(m);
return state;

}
}

public void setState(byte[] state) {
synchronized(m) {

Map new_m=(Map)Util.objectFromByteBuffer(state);
m.clear();
m.addAll(new_m);

}
}

}
// use default props (has to include STATE_TRANSFER)
channel=new JChannel();
channel.setReceiver(new MyReceiver());
channel.connect("TestChannel");
boolean rc=channel.getState(null, 5000);

In a group consisting of A,B and C, with D joining the group and calling Channel.getState(), the following se-
quence of callbacks happens:

• D calls Channel.getState(). The state will be retrieved from the oldest member, A

• A.MyReceiver.getState() is called. A returns a copy of its hashmap

• D: getState() returns true

• D.MyReceiver.setState() is called with the serialized state. D unserializes the state and sets it

3.6.15. Partial state transfer

Partial state transfer means that instead of transferring the entire state, we may want to transfer only a substate. For
example, with HTTP session replication, a new node in a cluster may want to transfer only the state of a specific
session, not all HTTP sessions. This can be done with either the pull or push model. The method to call would be
Channel.getState(), including the ID of the substate (a string). In the pull model, GetStateEvent and SetStateEvent
have an additional member, state_id, and in the push model, there are 2 additional getState() and setState() call-
backs. The example below shows partial state transfer for the push model:

API

JBoss 32

class MyReceiver extends ExtendedReceiverAdapter {
final Map m=new HashMap();

public byte[] getState() {
return getState(null);

}

public byte[] getState(String substate_id) {
// so nobody can modify the map while we serialize it
synchronized(m) {

byte[] state=null;
if(substate_id == null) {

state=Util.objectToByteBuffer(m);
}
else {

Object value=m.get(substate_id);
if(value != null) {

return Util.objectToByteBuffer(value);
}

}
return state;

}
}

public void setState(byte[] state) {
setState(null, state);

}

public void setState(String substate_id, byte[] state) {
synchronized(m) {

if(substate_id != null) {
Object value=Util.objectFromByteBuffer(state);
m.put(substate_id, value);

}
else {

Map new_m=(Map)Util.objectFromByteBuffer(state);
m.clear();
m.addAll(new_m);

}
}

}
}

// use default props (has to include pbcast.STATE_TRANSFER)
channel=new JChannel();
channel.setReceiver(new MyReceiver());
channel.connect("TestChannel");
boolean rc=channel.getState(null, "MyID", 5000);

The example shows that the Channel.getState() method specifies the ID of the substate, in this case "MyID". The
getState(String substate_id) method checks whether the substate ID is not null, and returns the substate per-
taining to the ID, or the entire state if the substate_id is null. The same goes for setting the substate: if set-

State(String substate_id, byte[] state) has a non-null substate_id, only that part of the current state will be
overwritten, otherwise (if null) the entire state will be overwritten.

3.6.16. Streaming state transfer

Streaming state transfer allows transfer of application (partial) state without having to load entire state into memory
prior to sending it to a joining member. Streaming state transfer is especially useful if the state is very large

API

JBoss 33

(>1Gb), and use of regular state transfer would likely result in OutOfMemoryException. Streaming state transfer
was introduced in JGroups 2.4. JGroups channel has to be configured with either regular or streaming state transfer.
The JChannel API that invokes state transfer (i.e. JChannel.getState(long timeout, Address member)) remains the
same.

Streaming state transfer, just as regular byte based state transfer, can be used in both pull and push mode. Similarly
to the current getState and setState methods of org.jgroups.MessageListener, the application interested in streaming
state transfer in a push mode would implement streaming getState method(s) by sending/writing state through a
provided OutputStream reference and setState method(s) by receiving/reading state through a provided Input-
Stream reference. In order to use streaming state transfer in a push mode, existing ExtendedMessageListener has
been expanded to include additional four methods:

public interface ExtendedMessageListener {

/*non-streaming callback methods ommitted for clarity*/

void getState(OutputStream ostream);
void getState(String state_id, OutputStream ostream);
void setState(InputStream istream);
void setState(String state_id, InputStream istream);

}

For a pull mode (when application uses channel.receive() to fetch events) two new event classes will be introduced:

• StreamingGetStateEvent

• StreamingSetStateEvent

These two events/classes are very similar to existing GetStateEvent and SetStateEvent but introduce a new field;
StreamingGetStateEvent has an OutputStream and StreamingSetStateEvent has an InputStream.

The following code snippet demonstrates how to pull events from a channel, processing StreamingGetStateEvent
and sending hypothetical state through a provided OutputStream reference. Handling of StreamingSetStateEvent is
analogous to this example:

...
Object obj=channel.receive(0);
if(obj instanceof StreamingGetStateEvent) {

StreamingGetStateEvent evt=(StreamingGetStateEvent)obj;
OutputStream oos = null;
try {

oos=new ObjectOutputStream(evt.getArg());
oos.writeObject(state);
oos.flush();

}
catch (Exception e) {}
finally {

try {
oos.close();

}
catch (IOException e) {

System.err.println(e);
}

}

API

JBoss 34

}

JGroups has a great flexibility with state transfer methodology by allowing application developers to implement
both byte based and streaming based state transfers. Application can, for example, implement streaming and byte
based state transfer callbacks and then interchange state transfer protocol in channel configuration to use either
streaming or byte based state transfer. However, one cannot configure a channel with both state transfers at the
same time and then in runtime choose which particular state transfer type to use.

3.6.17. Disconnecting from a channel

Disconnecting from a channel is done using the following method:

public void disconnect();

It will have no effect if the channel is already in the disconnected or closed state. If connected, it will remove itself
from the group membership. This is done (transparently for a channel user) by sending a leave request to the cur-
rent coordinator. The latter will subsequently remove the channel's address from its local view and send the new
view to all remaining members.

After a successful disconnect, the channel will be in the unconnected state, and may subsequently be re-connected
to.

3.6.18. Closing a channel

To destroy a channel instance (destroy the associated protocol stack, and release all resources), method close() is
used:

public void close();

It moves the channel to the closed state, in which no further operations are allowed (most throw an exception when
invoked on a closed channel). In this state, a channel instance is not considered used any longer by an application
and -- when the reference to the instance is reset -- the channel essentially only lingers around until it is garbage
collected by the Java runtime system.

API

JBoss 35

4
Building Blocks

Building blocks are layered on top of channels. Most of them do not even need a channel, all they need is a class
that implements interface Transport (channels do). This enables them to work on any type of group transport that
implements this interface. Building blocks can be used instead of channels whenever a higher-level interface is re-
quired.

Whereas channels are simple socket-like constructs, building blocks may offer a far more sophisticated interface. In
some cases, building blocks offer access to the underlying channel, so that -- if the building block at hand does not
offer a certain functionality -- the channel can be accessed directly. Building blocks are located in the
org.jgroups.blocks package. Only the ones that are relevant for application programmers are discussed below.

4.1. PullPushAdapter

Note that this building block has been deprecated and should not be used anymore ! Use a Receiver instead.

This class is a converter (or adapter, as used in [Gamma:1995] between the pull-style of actively receiving mes-
sages from the channel and the push-style where clients register a callback which is invoked whenever a message
has been received. Clients of a channel do not have to allocate a separate thread for message reception.

A PullPushAdapter is always created on top of a class that implements interface Transport (e.g. a channel). Cli-
ents interested in being called when a message is received can register with the PullPushAdapter using method
setListener(). They have to implement interface MessageListener, whose receive() method will be called
when a message arrives. When a client is interested in getting view, suspicion messages and blocks, then it must
additionally register as a MembershipListener using method setMembershipListener(). Whenever a view, suspi-
cion or block is received, the corresponding method will be called.

Upon creation, an instance of PullPushAdapter creates a thread which constantly calls the receive() method of
the underlying Transport instance, blocking until a message is available. When a message is received, if there is a
registered message listener, its receive() method will be called.

As this class does not implement interface Transport, but merely uses it for receiving messages, an underlying ob-
ject has to be used to send messages (e.g. the channel on top of which an object of this class resides). This is shown
in Figure 4.1.

Figure 4.1. Class PullPushAdapter

As is shown, the thread constantly pulls messages from the channel and forwards them to the registered listeners.
An application thus does not have to actively pull for messages, but the PullPushAdapter does this for it. Note
however, that the application has to directly access the channel if it wants to send a message.

JBoss 36

4.1.1. Example

This section shows sample code for using a PullPushAdapter. The example has been shortened for readability
(error handling has been removed).

public class PullPushTest implements MessageListener {
Channel channel;
PullPushAdapter adapter;
byte[] data="Hello world".getBytes();
String props; // fetch properties

public void receive(Message msg) {
System.out.println("Received msg: " + msg);

}

public void start() throws Exception {
channel=new JChannel(props);
channel.connect("PullPushTest");
adapter=new PullPushAdapter(channel);
adapter.setListener(this);

for(int i=0; i < 10; i++) {
System.out.println("Sending msg #" + i);
channel.send(new Message(null, null, data));
Thread.currentThread().sleep(1000);

}
adapter.stop();
channel.close();

}

public static void main(String args[]) {
try {

new PullPushTest().start();
}
catch(Exception e) { /* error */ }

}
}

First a channel is created and connected to. Then an instance of PullPushAdapter is created with the channel as ar-
gument. The constructor of PullPushAdapter starts its own thread which continually reads on the channel. Then
the MessageListener is set, which causes all messages received on the channel to be sent to receive(). Then a
number of messages are sent via the channel to the entire group. As group messages are also received by the
sender, the receive() method will be called every time a message is received. Finally the PullPushAdapter is
stopped and the channel closed. Note that explicitly stopping the PullPushAdapter is not actually necessary, a
closing the channel would cause the PullPushAdapter to terminate anyway.

Note that, compared to the pull-style example, push-style message reception is considerably easier (no separate
thread management) and requires less code to program.

Note
The PullPushAdapter has been deprecated, and will be removed in 3.0. Use a Receiver implementation in-
stead. The advantage of the Receiver-based (push) model is that we save 1 thread.

4.2. MessageDispatcher

Building Blocks

JBoss 37

Channels are simple patterns to asynchronously send a receive messages. However, a significant number of com-
munication patterns in group communication require synchronous communication. For example, a sender would
like to send a message to the group and wait for all responses. Or another application would like to send a message
to the group and wait only until the majority of the receivers have sent a response, or until a timeout occurred.

MessageDispatcher offers a combination of the above pattern with other patterns. It provides synchronous (as well
as asynchronous) message sending with request-response correlation, e.g. matching responses with the original re-
quest. It also offers push-style message reception (by internally using the PullPushAdapter).

An instance of MessageDispatcher is created with a channel as argument. It can now be used in both client and
server role: a client sends requests and receives responses and a server receives requests and send responses. Mes-
sageDispatcher allows a application to be both at the same time. To be able to serve requests, the RequestHand-

ler.handle() method has to be implemented:

Object handle(Message msg);

The handle() method is called any time a request is received. It must return a return value (must be serializable,
but can be null) or throw an exception. The return value will be returned to the sender (as a null response, see be-
low). The exception will also be propagated to the requester.

The two methods to send requests are:

public RspList castMessage(Vector dests, Message msg, int mode, long timeout);
public Object sendMessage(Message msg, int mode, long timeout)

throws TimeoutException;

The castMessage() method sends a message to all members defined in dests. If dests is null the message will be
sent to all members of the current group. Note that a possible destination set in the message will be overridden. If a
message is sent synchronously then the timeout argument defines the maximum amount of time in milliseconds to
wait for the responses.

The mode parameter defines whether the message will be sent synchronously or asynchronously. The following val-
ues are valid (from org.jgroups.blocks.GroupRequest):

GET_FIRST
Returns the first response received.

GET_ALL
Waits for all responses (minus the ones from suspected members)

GET_MAJORITY
Waits for a majority of all responses (relative to the group size)

GET_ABS_MAJORITY
Waits for the majority (absolute, computed once)

GET_N
Wait for n responses (may block if n > group size)

Building Blocks

JBoss 38

GET_NONE
Wait for no responses, return immediately (non-blocking). This make the call asynchronous.

The sendMessage() method allows an application programmer to send a unicast message to a receiver and option-
ally receive the response. The destination of the message has to be non-null (valid address of a receiver). The mode

argument is ignored (it is by default set to GroupRequest.GET_FIRST) unless it is set to GET_NONE in which case the
request becomes asynchronous, ie. we will not wait for the response.

One advantage of using this building block is that failed members are removed from the set of expected responses.
For example, when sending a message to 10 members and waiting for all responses, and 2 members crash before
being able to send a response, the call will return with 8 valid responses and 2 marked as failed. The return value of
castMessage() is a RspList which contains all responses (not all methods shown):

public class RspList implements Map<Address,Rsp> {
public boolean isReceived(Address sender);
public int numSuspectedMembers();
public Vector getResults();
public Vector getSuspectedMembers();
public boolean isSuspected(Address sender);
public Object get(Address sender);
public int size();

}

Method isReceived() checks whether a response from sender has already been received. Note that this is only
true as long as no response has yet been received, and the member has not been marked as failed. numSuspected-
Members() returns the number of members that failed (e.g. crashed) during the wait for responses. getResults()
returns a list of return values. get() returns the return value for a specific member.

4.2.1. Example

This section describes an example of how to use a MessageDispatcher.

public class MessageDispatcherTest implements RequestHandler {
Channel channel;
MessageDispatcher disp;
RspList rsp_list;
String props; // to be set by application programmer

public void start() throws Exception {
channel=new JChannel(props);
disp=new MessageDispatcher(channel, null, null, this);
channel.connect("MessageDispatcherTestGroup");

for(int i=0; i < 10; i++) {
Util.sleep(100);
System.out.println("Casting message #" + i);
rsp_list=disp.castMessage(null,

new Message(null, null, new String("Number #" + i)),
GroupRequest.GET_ALL, 0);

System.out.println("Responses:\n" +rsp_list);
}
channel.close();
disp.stop();

}

Building Blocks

JBoss 39

public Object handle(Message msg) {
System.out.println("handle(): " + msg);
return new String("Success !");

}

public static void main(String[] args) {
try {

new MessageDispatcherTest().start();
}
catch(Exception e) {

System.err.println(e);
}

}
}

The example starts with the creation of a channel. Next, an instance of MessageDispatcher is created on top of the
channel. Then the channel is connected. The MessageDispatcher will from now on send requests, receive match-
ing responses (client role) and receive requests and send responses (server role).

We then send 10 messages to the group and wait for all responses. The timeout argument is 0, which causes the
call to block until all responses have been received.

The handle() method simply prints out a message and returns a string.

Finally both the MessageDispatcher and channel are closed.

4.3. RpcDispatcher

This class is derived from MessageDispatcher. It allows a programmer to invoke remote methods in all (or single)
group members and optionally wait for the return value(s). An application will typically create a channel and layer
the RpcDispatcher building block on top of it, which allows it to dispatch remote methods (client role) and at the
same time be called by other members (server role).

Compared to MessageDispatcher, no handle() method needs to be implemented. Instead the methods to be called
can be placed directly in the class using regular method definitions (see example below). The invoke remote meth-
od calls (unicast and multicast) the following methods are used (not all methods shown):

public RspList callRemoteMethods(Vector dests, String method_name, int mode, long timeout);
public RspList callRemoteMethods(Vector dests, String method_name, Object arg1, int mode,

long timeout);
public Object callRemoteMethod(Address dest, String method_name, int mode, long timeout);
public Object callRemoteMethod(Address dest, String method_name, Object arg1, int mode,

long timeout);

The family of callRemoteMethods() is invoked with a list of receiver addresses. If null, the method will be in-
voked in all group members (including the sender). Each call takes the name of the method to be invoked and the
mode and timeout parameters, which are the same as for MessageDispatcher. Additionally, each method takes
zero or more parameters: there are callRemoteMethods() methods with up to 3 arguments. As shown in the ex-
ample above, the first 2 methods take zero and one parameters respectively.

The family of callRemoteMethod() methods takes almost the same parameters, except that there is only one des-

Building Blocks

JBoss 40

7See the Programmer's Guide and the Javadoc documentation for more information about this class.

tination address instead of a list. If the dest argument is null, the call will fail.

If a sender needs to use more than 3 arguments, it can use the generic versions of callRemoteMethod() and
callRemoteMethods() which use a MethodCall

7 instance rather than explicit arguments.

Java's Reflection API is used to find the correct method in the receiver according to the method name and number
and types of supplied arguments. There is a runtime exception if a method cannot be resolved.

(* Update: these methods are deprecated; must use MethodCall argument now *)

4.3.1. Example

The code below shows an example:

public class RpcDispatcherTest {
Channel channel;
RpcDispatcher disp;
RspList rsp_list;
String props; // set by application

public int print(int number) throws Exception {
return number * 2;

}

public void start() throws Exception {
channel=new JChannel(props);
disp=new RpcDispatcher(channel, null, null, this);
channel.connect("RpcDispatcherTestGroup");

for(int i=0; i < 10; i++) {
Util.sleep(100);
rsp_list=disp.callRemoteMethods(null, "print",

new Integer(i), GroupRequest.GET_ALL, 0);
System.out.println("Responses: " +rsp_list);

}
channel.close();
disp.stop();

}

public static void main(String[] args) {
try {

new RpcDispatcherTest().start();
}
catch(Exception e) {

System.err.println(e);
}

}
}

Class RpcDispatcher defines method print() which will be called subsequently. The entry point start() method
creates a channel and an RpcDispatcher which is layered on top. Method callRemoteMethods() then invokes the
remote print() method in all group members (also in the caller). When all responses have been received, the call
returns and the responses are printed.

As can be seen, the RpcDispatcher building block reduces the amount of code that needs to be written to imple-
ment RPC-based group communication applications by providing a higher abstraction level between the application

Building Blocks

JBoss 41

and the primitive channels.

4.3.1.1. RequestOptions

RequestOptions is a collection of options that can be passed into a call, e.g. the mode (GET_ALL, GET_NONE),
timeout, flags etc. It is an alternative to passing multiple arguments to a method.

All calls with individual parameters have been deprecated in 2.9 and the new calls with RequestOptions are:

public RspList callRemoteMethods(Collection<Address> dests, String method_name,
Object[] args,Class[] types, RequestOptions options);

public RspList callRemoteMethods(Collection<Address> dests, MethodCall method_call,
RequestOptions options);

public Object callRemoteMethod(Address dest, String method_name, Object[] args,
Class[] types, RequestOptions options);

public Object callRemoteMethod(Address dest, MethodCall call, RequestOptions options);

An example of how to use RequestOptions is:

RpcDispatcher disp;
RequestOptions opts=new RequestOptions(Request.GET_ALL)

.setFlags(Message.NO_FC | Message.DONT_BUNDLE);
Object val=disp.callRemoteMethod(target, method_call, opts);

4.3.1.2. Asynchronous calls with futures

When invoking a synchronous call, the calling thread is blocked until the response (or responses) has been re-
ceived.

A Future allows a caller to return immediately and grab the result(s) later. In 2.9, two new methods, which return
futures, have been added to RpcDispatcher:

public NotifyingFuture<RspList> callRemoteMethodsWithFuture(Collection<Address> dests,
MethodCall method_call, RequestOptions options);

public <T> NotifyingFuture<T> callRemoteMethodWithFuture(Address dest, MethodCall call,
RequestOptions options);

A NotifyingFuture extends java.util.concurrent.Future, with its regular methods such as isDone(), get() and can-
cel(). NotifyingFuture adds setListener<FutureListener> to get notified when the result is available. This is shown
in the following code:

NotifyingFuture<RspList> future=dispatcher.callRemoteMethodsWithFuture(...);
future.setListener(new FutureListener() {

void futureDone(Future<T> future) {
System.out.println("result is " + future.get());

}
}
);

Building Blocks

JBoss 42

4.4. ReplicatedHashMap

This class was written as a demo of how state can be shared between nodes of a cluster. It has never been heavily
tested and is therefore not meant to be used in production, and unsupported.

A ReplicatedHashMap uses a concurrent hashmap internally and allows to create several instances of hashmaps in
different processes. All of these instances have exactly the same state at all times. When creating such an instance,
a group name determines which group of replicated hashmaps will be joined. The new instance will then query the
state from existing members and update itself before starting to service requests. If there are no existing members,
it will simply start with an empty state.

Modifications such as put(), clear() or remove() will be propagated in orderly fashion to all replicas. Read-only
requests such as get() will only be sent to the local copy.

Since both keys and values of a hashtable will be sent across the network, both of them have to be serializable. This
allows for example to register remote RMI objects with any local instance of a hashtable, which can subsequently
be looked up by another process which can then invoke remote methods (remote RMI objects are serializable).
Thus, a distributed naming and registration service can be built in just a couple of lines.

A ReplicatedHashMap allows to register for notifications, e.g. when a new item is set, or an existing one removed.
All registered listeners will notified when such an event occurs. Notification is always local; for example in the
case of removing an element, first the element is removed in all replicas, which then notify their listener(s) of the
removal (after the fact).

ReplicatedHashMap allow members in a group to share common state across process and machine boundaries.

4.5. NotificationBus

This class provides notification sending and handling capability. Also, it allows an application programmer to
maintain a local cache which is replicated by all instances. NotificationBus also sits on top of a channel, however
it creates its channel itself, so the application programmers do not have to provide their own channel. Notification
consumers can subscribe to receive notifications by calling setConsumer() and implementing interface Notifica-

tionBus.Consumer:

public interface Consumer {
void handleNotification(Serializable n);
Serializable getCache();
void memberJoined(Address mbr);
void memberLeft(Address mbr);

}

Method handleNotification() is called whenever a notification is received from the channel. A notification is
any object that is serializable. Method getCache() is called when someone wants to retrieve our state; the state can
be returned as a serializable object. The memberJoined() and memberLeft() callbacks are invoked whenever a
member joins or leaves (or crashes).

The most important methods of NotificationBus are:

Building Blocks

JBoss 43

public class NotificationBus {
public void setConsumer(Consumer c);
public void start() throws Exception;
public void stop();
public void sendNotification(Serializable n);
public Serializable getCacheFromCoordinator(long timeout, int max_tries);
public Serializable getCacheFromMember(Address mbr, long timeout, int max_tries);

}

Method setConsumer() allows a consumer to register itself for notifications.

The start() and stop() methods start and stop the NotificationBus.

Method sendNotification() sends the serializable object given as argument to all members of the group, invok-
ing their handleNotification() methods on reception.

Methods getCacheFromCoordinator() and getCacheFromMember() provide functionality to fetch the group state
from the coordinator (first member in membership list) or any other member (if its address is known). They take as
arguments a timeout and a maximum number of unsuccessful attempts until they return null. Typically one of these
methods would be called just after creating a new NotificationBus to acquire the group state. Note that if these
methods are used, then the consumers must implement Consumer.getCache(), otherwise the two methods above
would always return null.

4.6. Distributed locking

In 2.12, a new distributed locking service was added, replacing DistributedLockManager. The new service is im-
plemented as a protocol and is used via org.jgroups.blocks.locking.LockService.

LockService talks to the locking protocol via events. The main abstraction of a distributed lock is an implementa-
tion of java.util.concurrent.locks.Lock. All lock methods are supported, however, conditions are not yet supported.
(Based on feedback, they might be added later).

Below is an example of how LockService is typically used:

// locking.xml needs to have a locking protocol
JChannel ch=new JChannel("/home/bela/locking.xml");
LockService lock_service=new LockService(ch);
ch.connect("lock-cluster");
Lock lock=lock_service.getLock("mylock");
lock.lock();
try {

// do something with the locked resource
}
finally {

lock.unlock();
}

In the example, we create a channel, then a LockService, then connect the channel. Then we grab a lock named
"mylock", which we lock and subsequently unlock.

Building Blocks

JBoss 44

Note that the owner of a lock is always a given thread in a cluster, so the owner is the JGroups address and the
thread ID. This means that different threads inside the same JVM trying to access the same named lock will com-
pete for it. If thread-22 grabs the lock first, then thread-5 will block until thread-23 releases the lock.

JGroups includes a demo (org.jgroups.demos.LockServiceDemo), which can be used to interactively experiment
with distributed locks. LockServiceDemo -h dumps all command line options.

Currently (Jan 2011), there are 2 protocols which provide locking: Section 7.13.8.2 and Section 7.13.8.1. The lock-
ing protocol has to be placed at or towards the top of the stack (close to the channel).

4.6.1. Locking and merges

The following scenario is susceptible to merging: we have a cluster view of {A,B,C,D} and then the cluster splits
into {A,B} and {C,D}. Assume that B and D now acquire a lock "mylock". This is what happens (with the locking
protocol being CENTRAL_LOCK):

• There are 2 coordinators: A for {A,B} and C for {C,D}

• B successfully acquires "mylock" from A

• D successfully acquires "mylock" from C

• The partitions merge back into {A,B,C,D}. Now, only A is the coordinator, but C ceases to be a coordinator

• Problem: D still holds a lock which should actually be invalid !

There is no easy way (via the Lock API) to 'remove' the lock from D. We could for example simply release D's
lock on "mylock", but then there's no way telling D that the lock it holds is actually stale !

Therefore the recommended solution here is for nodes to listen to MergeView changes if they expect merging to
occur, and re-acquire all of their locks after a merge, e.g.:

Lock l1, l2, l3;
LockService lock_service;
...
public void viewAccepted(View view) {

if(view instanceof MergeView) {
new Thread() {

public void run() {
lock_service.unlockAll();
// stop all access to resources protected by l1, l2 or l3
// every thread needs to re-acquire the locks it holds

}
}.start

}
}

4.7. Distributed ExecutionService

In 2.12, a distributed execution service was added. The new service is implemented as a protocol and is used via
org.jgroups.blocks.executor.ExecutionService.

Building Blocks

JBoss 45

ExecutionService talks to the executing protocol via events. The main abstraction is an implementation of
java.util.concurrent.locks.ExecutorService. All methods are supported. The restrictions are however that the
Callable or Runnable must be Serializable, Externalizable or Streamable. Also the result produced from the future
needs to be Serializable, Externalizable or Streamable. If the Callable or Runnable are not then an IllegalArgu-
mentException is immediately thrown. If a result is not then a NotSerializableException with the name of the class
will be returned to the Future as an exception cause.

Below is an example of how ExecutionService is typically used:

// locking.xml needs to have a locking protocol
JChannel ch=new JChannel("/home/bela/executing.xml");
ExecutionService exec_service =new ExecutionService(ch);
ch.connect("exec-cluster");
Future<Value> future = exec_service.submit(new MyCallable());
try {

Value value = future.get();
// Do something with value

}
catch (InterruptedException e) {

e.printStackTrace();
}
catch (ExecutionException e) {

e.getCause().printStackTrace();
}

In the example, we create a channel, then an ExecutionService, then connect the channel. Then we submit our
callable giving us a Future. Then we wait for the future to finish returning our value and do something with it. If
any exception occurs we print the stack trace of that exception.

JGroups includes a demo (org.jgroups.demos.ExecutionServiceDemo), which can be used to interactively experi-
ment with a distributed sort algorithm and performance. This is for demonstration purposes and performance
should not be assumed to be better than local. ExecutionServiceDemo -h dumps all command line options.

Currently (March 2011), there is 1 protocol which provide executions: Section 7.13.9. The executing protocol has
to be placed at or towards the top of the stack (close to the channel).

Building Blocks

JBoss 46

5
Advanced Concepts

This chapter discusses some of the more advanced concepts of JGroups with respect to using it and setting it up
correctly.

5.1. Using multiple channels

When using a fully virtual synchronous protocol stack, the performance may not be great because of the larger
number of protocols present. For certain applications, however, throughput is more important than ordering, e.g. for
video/audio streams or airplane tracking. In the latter case, it is important that airplanes are handed over between
control domains correctly, but if there are a (small) number of radar tracking messages (which determine the exact
location of the plane) missing, it is not a problem. The first type of messages do not occur very often (typically a
number of messages per hour), whereas the second type of messages would be sent at a rate of 10-30 messages/
second. The same applies for a distributed whiteboard: messages that represent a video or audio stream have to be
delivered as quick as possible, whereas messages that represent figures drawn on the whiteboard, or new parti-
cipants joining the whiteboard have to be delivered according to a certain order.

The requirements for such applications can be solved by using two separate stacks: one for control messages such
as group membership, floor control etc and the other one for data messages such as video/audio streams (actually
one might consider using one channel for audio and one for video). The control channel might use virtual syn-
chrony, which is relatively slow, but enforces ordering and retransmission, and the data channel might use a simple
UDP channel, possibly including a fragmentation layer, but no retransmission layer (losing packets is preferred to
costly retransmission).

The Draw2Channels demo program (in the org.jgroups.demos package) demonstrates how to use two different
channels.

5.2. The shared transport: sharing a transport between multiple
channels in a JVM

To save resources (threads, sockets and CPU cycles), transports of channels residing within the same JVM can be
shared. If we have 4 channels inside of a JVM (as is the case in an application server such as JBoss), then we have
4 separate thread pools and sockets (1 per transport, and there are 4 transports (1 per channel)).

If those transport happen to be the same (all 4 channels use UDP, for example), then we can share them and only
create 1 instance of UDP. That transport instance is created and started only once, when the first channel is created,
and is deleted when the last channel is closed.

Each channel created over a shared transport has to join a different cluster. An exception will be thrown if a chan-
nel sharing a transport tries to connect to a cluster to which another channel over the same transport is already con-

JBoss 47

nected.

When we have 3 channels (C1 connected to "cluster-1", C2 connected to "cluster-2" and C3 connected to "cluster-
3") sending messages over the same shared transport, the cluster name with which the channel connected is used to
multiplex messages over the shared transport: a header with the cluster name ("cluster-1") is added when C1 sends
a message.

When a message with a header of "cluster-1" is received by the shared transport, it is used to demultiplex the mes-
sage and dispatch it to the right channel (C1 in this example) for processing.

How channels can share a single transport is shown in Figure 5.1.

Figure 5.1. A shared transport

Here we see 4 channels which share 2 transports. Note that first 3 channels which share transport "tp_one" have the
same protocols on top of the shared transport. This is not required; the protocols above "tp_one" could be different
for each of the 3 channels as long as all applications residing on the same shared transport have the same require-
ments for the transport's configuration.

To use shared transports, all we need to do is to add a property "singleton_name" to the transport configuration. All
channels with the same singleton name will be shared.

Advanced Concepts

JBoss 48

5.3. Transport protocols

A transport protocol refers to the protocol at the bottom of the protocol stack which is responsible for sending and
receiving messages to/from the network. There are a number of transport protocols in JGroups. They are discussed
in the following sections.

A typical protocol stack configuration using UDP is:

<config>
<UDP

mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"
mcast_port="${jgroups.udp.mcast_port:45588}"
discard_incompatible_packets="true"
max_bundle_size="60000"
max_bundle_timeout="30"
ip_ttl="${jgroups.udp.ip_ttl:2}"
enable_bundling="true"
thread_pool.enabled="true"
thread_pool.min_threads="1"
thread_pool.max_threads="25"
thread_pool.keep_alive_time="5000"
thread_pool.queue_enabled="false"
thread_pool.queue_max_size="100"
thread_pool.rejection_policy="Run"
oob_thread_pool.enabled="true"
oob_thread_pool.min_threads="1"
oob_thread_pool.max_threads="8"
oob_thread_pool.keep_alive_time="5000"
oob_thread_pool.queue_enabled="false"
oob_thread_pool.queue_max_size="100"
oob_thread_pool.rejection_policy="Run"/>

<PING timeout="2000"
num_initial_members="3"/>

<MERGE2 max_interval="30000"
min_interval="10000"/>

<FD_SOCK/>
<FD timeout="10000" max_tries="5" shun="true"/>
<VERIFY_SUSPECT timeout="1500" />
<pbcast.NAKACK

use_mcast_xmit="false" gc_lag="0"
retransmit_timeout="300,600,1200,2400,4800"
discard_delivered_msgs="true"/>

<UNICAST timeout="300,600,1200,2400,3600"/>
<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"

max_bytes="400000"/>
<pbcast.GMS print_local_addr="true" join_timeout="3000"

shun="false"
view_bundling="true"/>

<FC max_credits="20000000"
min_threshold="0.10"/>

<FRAG2 frag_size="60000" />
<pbcast.STATE_TRANSFER />

</config>

In a nutshell the properties of the protocols are:

UDP
This is the transport protocol. It uses IP multicasting to send messages to the entire cluster, or individual nodes.

Advanced Concepts

JBoss 49

Other transports include TCP, TCP_NIO and TUNNEL.

PING
Uses IP multicast (by default) to find initial members. Once found, the current coordinator can be determined
and a unicast JOIN request will be sent to it in order to join the cluster.

MERGE2
Will merge subgroups back into one group, kicks in after a cluster partition.

FD_SOCK
Failure detection based on sockets (in a ring form between members). Generates notification if a member fails

FD
Failure detection based on heartbeats and are-you-alive messages (in a ring form between members). Generates
notification if a member fails

VERIFY_SUSPECT
Double-checks whether a suspected member is really dead, otherwise the suspicion generated from protocol
below is discarded

pbcast.NAKACK
Ensures (a) message reliability and (b) FIFO. Message reliability guarantees that a message will be received. If
not, the receiver(s) will request retransmission. FIFO guarantees that all messages from sender P will be re-
ceived in the order P sent them

UNICAST
Same as NAKACK for unicast messages: messages from sender P will not be lost (retransmission if necessary)
and will be in FIFO order (conceptually the same as TCP in TCP/IP)

pbcast.STABLE
Deletes messages that have been seen by all members (distributed message garbage collection)

pbcast.GMS
Membership protocol. Responsible for joining/leaving members and installing new views.

FRAG2
Fragments large messages into smaller ones and reassembles them back at the receiver side. For both multicast
and unicast messages

STATE_TRANSFER
Ensures that state is correctly transferred from an existing member (usually the coordinator) to a new member.

5.3.1. UDP

UDP uses IP multicast for sending messages to all members of a group and UDP datagrams for unicast messages
(sent to a single member). When started, it opens a unicast and multicast socket: the unicast socket is used to send/
receive unicast messages, whereas the multicast socket sends/receives multicast messages. The channel's address
will be the address and port number of the unicast socket.

5.3.1.1. Using UDP and plain IP multicasting

Advanced Concepts

JBoss 50

8Although not as efficient (and using more bandwidth), it is sometimes the only possibility to reach group members.

A protocol stack with UDP as transport protocol is typically used with groups whose members run on the same host
or are distributed across a LAN. Before running such a stack a programmer has to ensure that IP multicast is en-
abled across subnets. It is often the case that IP multicast is not enabled across subnets. Refer to section Section 2.8
for running a test program that determines whether members can reach each other via IP multicast. If this does not
work, the protocol stack cannot use UDP with IP multicast as transport. In this case, the stack has to either use
UDP without IP multicasting or other transports such as TCP.

5.3.1.2. Using UDP without IP multicasting

The protocol stack with UDP and PING as the bottom protocols use IP multicasting by default to send messages to
all members (UDP) and for discovery of the initial members (PING). However, if multicasting cannot be used, the
UDP and PING protocols can be configured to send multiple unicast messages instead of one multicast message 8

(UDP) and to access a well-known server (GossipRouter) for initial membership information (PING).

To configure UDP to use multiple unicast messages to send a group message instead of using IP multicasting, the
ip_mcast property has to be set to false .

To configure PING to access a GossipRouter instead of using IP multicast the following properties have to be set:

gossip_host
The name of the host on which GossipRouter is started

gossip_port
The port on which GossipRouter is listening

gossip_refresh
The number of milliseconds to wait until refreshing our address entry with the GossipRouter

Before any members are started the GossipRouter has to be started, e.g.

java org.jgroups.stack.GossipRouter -port 5555 -bindaddress localhost

This starts the GossipRouter on the local host on port 5555. The GossipRouter is essentially a lookup service for
groups and members. It is a process that runs on a well-known host and port and accepts GET(group) and RE-
GISTER(group, member) requests. The REGISTER request registers a member's address and group with the Gos-
sipRouter. The GET request retrieves all member addresses given a group name. Each member has to periodically (
gossip_refresh) re-register their address with the GossipRouter, otherwise the entry for that member will be re-
moved (accommodating for crashed members).

The following example shows how to disable the use of IP multicasting and use a GossipRouter instead. Only the
bottom two protocols are shown, the rest of the stack is the same as in the previous example:

<UDP ip_mcast="false" mcast_addr="224.0.0.35" mcast_port="45566" ip_ttl="32"
mcast_send_buf_size="150000" mcast_recv_buf_size="80000"/>

<PING gossip_host="localhost" gossip_port="5555" gossip_refresh="15000"
timeout="2000" num_initial_members="3"/>

Advanced Concepts

JBoss 51

9This can actually be used to test the MERGE2 protocol: start two members (forming two singleton groups because they don't find each other),
then start the GossipRouter. After some time, the two members will merge into one group

The property ip_mcast is set to false in UDP and the gossip properties in PING define the GossipRouter to be on the
local host at port 5555 with a refresh rate of 15 seconds. If PING is parameterized with the GossipRouter's address
and port, then gossiping is enabled, otherwise it is disabled. If only one parameter is given, gossiping will be dis-
abled .

Make sure to run the GossipRouter before starting any members, otherwise the members will not find each other
and each member will form its own group 9 .

5.3.2. TCP

TCP is a replacement of UDP as bottom layer in cases where IP Multicast based on UDP is not desired. This may
be the case when operating over a WAN, where routers will discard IP MCAST. As a rule of thumb UDP is used as
transport for LANs, whereas TCP is used for WANs.

The properties for a typical stack based on TCP might look like this (edited/protocols removed for brevity):

<TCP start_port="7800" />
<TCPPING timeout="3000"

initial_hosts="${jgroups.tcpping.initial_hosts:localhost[7800],localhost[7801]}"
port_range="1"
num_initial_members="3"/>

<VERIFY_SUSPECT timeout="1500" />
<pbcast.NAKACK

use_mcast_xmit="false" gc_lag="0"
retransmit_timeout="300,600,1200,2400,4800"
discard_delivered_msgs="true"/>

<pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
max_bytes="400000"/>

<pbcast.GMS print_local_addr="true" join_timeout="3000"
shun="true"
view_bundling="true"/>

TCP
The transport protocol, uses TCP (from TCP/IP) to send unicast and multicast messages. In the latter case, it
sends multiple unicast messages.

TCPPING
Discovers the initial membership to determine coordinator. Join request will then be sent to coordinator.

VERIFY_SUSPECT
Double checks that a suspected member is really dead

pbcast.NAKACK
Reliable and FIFO message delivery

pbcast.STABLE
Distributed garbage collection of messages seen by all members

pbcast.GMS
Membership services. Takes care of joining and removing new/old members, emits view changes

Advanced Concepts

JBoss 52

10PING and TCPGOSSIP will be merged in the future.

Since TCP already offers some of the reliability guarantees that UDP doesn't, some protocols (e.g. FRAG and UNI-
CAST) are not needed on top of TCP.

When using TCP, each message to the group is sent as multiple unicast messages (one to each member). Due to the
fact that IP multicasting cannot be used to discover the initial members, another mechanism has to be used to find
the initial membership. There are a number of alternatives:

• PING with GossipRouter: same solution as described in Section 5.3.1.2 . The ip_mcast property has to be set to
false . GossipRouter has to be started before the first member is started.

• TCPPING: uses a list of well-known group members that it solicits for initial membership

• TCPGOSSIP: essentially the same as the above PING 10 . The only difference is that TCPGOSSIP allows for
multiple GossipRouters instead of only one.

• JDBC_PING: using a shared database via JDBC or DataSource.

The next two section illustrate the use of TCP with both TCPPING and TCPGOSSIP.

5.3.2.1. Using TCP and TCPPING

A protocol stack using TCP and TCPPING looks like this (other protocols omitted):

<TCP start_port="7800" /> +
<TCPPING initial_hosts="HostA[7800],HostB[7800]" port_range="5"
timeout="3000" num_initial_members="3" />

The concept behind TCPPING is that no external daemon such as GossipRouter is needed. Instead some selected
group members assume the role of well-known hosts from which initial membership information can be retrieved.
In the example HostA and HostB are designated members that will be used by TCPPING to lookup the initial mem-
bership. The property start_port in TCP means that each member should try to assign port 7800 for itself. If this is
not possible it will try the next higher port (7801) and so on, until it finds an unused port.

TCPPING will try to contact both HostA and HostB , starting at port 7800 and ending at port 7800 + port_range , in
the above example ports 7800 - 7804 . Assuming that at least one of HostA or HostB is up, a response will be re-
ceived. To be absolutely sure to receive a response all the hosts on which members of the group will be running can
be added to the configuration string.

5.3.2.2. Using TCP and TCPGOSSIP

As mentioned before TCPGOSSIP is essentially the same as PING with properties gossip_host , gossip_port and
gossip_refresh set. However, in TCPGOSSIP these properties are called differently as shown below (only the
bottom two protocols are shown):

<TCP />
<TCPGOSSIP initial_hosts="localhost[5555],localhost[5556]" gossip_refresh_rate="10000"
num_initial_members="3" />

Advanced Concepts

JBoss 53

The initial_hosts properties combines both the host and port of a GossipRouter, and it is possible to specify
more than one GossipRouter. In the example there are two GossipRouters at ports 5555 and 5556 on the local host.
Also, gossip_refresh_rate defines how many milliseconds to wait between refreshing the entry with the Gos-
sipRouters.

The advantage of having multiple GossipRouters is that, as long as at least one is running, new members will al-
ways be able to retrieve the initial membership. Note that the GossipRouter should be started before any of the
members.

5.3.3. TUNNEL

5.3.3.1. Using TUNNEL to tunnel a firewall

Firewalls are usually placed at the connection to the internet. They shield local networks from outside attacks by
screening incoming traffic and rejecting connection attempts to host inside the firewalls by outside machines. Most
firewall systems allow hosts inside the firewall to connect to hosts outside it (outgoing traffic), however, incoming
traffic is most often disabled entirely.

Tunnels are host protocols which encapsulate other protocols by multiplexing them at one end and demultiplexing
them at the other end. Any protocol can be tunneled by a tunnel protocol.

The most restrictive setups of firewalls usually disable all incoming traffic, and only enable a few selected ports for
outgoing traffic. In the solution below, it is assumed that one TCP port is enabled for outgoing connections to the
GossipRouter.

JGroups has a mechanism that allows a programmer to tunnel a firewall. The solution involves a GossipRouter,
which has to be outside of the firewall, so other members (possibly also behind firewalls) can access it.

The solution works as follows. A channel inside a firewall has to use protocol TUNNEL instead of UDP or TCP as
bottommost layer. Recommended discovery protocol is PING, starting with 2.8 release, you do not have to specify
any gossip routers in PING.

<TUNNEL gossip_router_hosts="127.0.0.1[12001]" />
<PING />

TCPGOSSIP uses the GossipRouter (outside the firewall) at port 12001 to register its address (periodically) and to re-
trieve the initial membership for its group. It is not recommended to use TCPGOSSIP for discovery if TUNNEL is
already used. TCPGOSSIP might be used in rare scenarios when registration and initial member discovery has to
be done through gossip router indepedent of transport protocol being used. Starting with 2.8 release TCPGOSSIP
accepts one or multiple router hosts as a comma delimited list of host[port] elements specified in a property ini-
tial_hosts.

TUNNEL establishes a TCP connection to the GossipRouter process (also outside the firewall) that accepts messages
from members and passes them on to other members. This connection is initiated by the host inside the firewall and
persists as long as the channel is connected to a group. GossipRouter will use the same connection to send incom-
ing messages to the channel that initiated the connection. This is perfectly legal, as TCP connections are fully du-
plex. Note that, if GossipRouter tried to establish its own TCP connection to the channel behind the firewall, it
would fail. But it is okay to reuse the existing TCP connection, established by the channel.

Advanced Concepts

JBoss 54

11To do so, GossipRouter has to maintain a table between groups, member addresses and TCP connections.

Note that TUNNEL has to be given the hostname and port of the GossipRouter process. This example assumes a Gos-
sipRouter is running on the local host at port 12001. Both TUNNEL and TCPGOSSIP (or PING) access the same
GossipRouter. Starting with 2.8 release TUNNEL transport layer accepts one or multiple router hosts as a comma
delimited list of host[port] elements specified in a property gossip_router_hosts.

Any time a message has to be sent, TUNNEL forwards the message to GossipRouter, which distributes it to its des-
tination: if the message's destination field is null (send to all group members), then GossipRouter looks up the
members that belong to that group and forwards the message to all of them via the TCP connection they established
when connecting to GossipRouter. If the destination is a valid member address, then that member's TCP connection
is looked up, and the message is forwarded to it 11 .

Starting with 2.8 release, gossip router is no longer a single point of failure. In a set-up with multiple gossip
routers, routers do not communicate among themselves, and single point of failure is avoided by having each chan-
nel simply connect to multiple available routers. In case one or more routers go down, cluster members are still
able to exchange message through remaining available router instances, if there are any. For each send invocation,
a channel goes through a list of available connections to routers and attempts to send a message on each connection
until it succeeds. If a message could not be sent on any of the connections – an exception is raised. Default policy
for connection selection is random. However, we also provide an plug-in interface for other policies as well. Gossip
router configuration is static and is not updated for the lifetime of the channel. A list of available routers has to be
provided in channel configuration file.

To tunnel a firewall using JGroups, the following steps have to be taken:

1. Check that a TCP port (e.g. 12001) is enabled in the firewall for outgoing traffic

2. Start the GossipRouter:

start org.jgroups.stack.GossipRouter -port 12001

3. Configure the TUNNEL protocol layer as instructed above.

4. Create a channel

The general setup is shown in Figure 5.2 .

Advanced Concepts

JBoss 55

Figure 5.2. Tunneling a firewall

First, the GossipRouter process is created on host B. Note that host B should be outside the firewall, and all chan-
nels in the same group should use the same GossipRouter process. When a channel on host A is created, its TCP-

GOSSIP protocol will register its address with the GossipRouter and retrieve the initial membership (assume this is
C). Now, a TCP connection with the GossipRouter is established by A; this will persist until A crashes or voluntar-
ily leaves the group. When A multicasts a message to the group, GossipRouter looks up all group members (in this
case, A and C) and forwards the message to all members, using their TCP connections. In the example, A would re-
ceive its own copy of the multicast message it sent, and another copy would be sent to C.

This scheme allows for example Java applets , which are only allowed to connect back to the host from which they
were downloaded, to use JGroups: the HTTP server would be located on host B and the gossip and GossipRouter
daemon would also run on that host. An applet downloaded to either A or C would be allowed to make a TCP con-
nection to B. Also, applications behind a firewall would be able to talk to each other, joining a group.

However, there are several drawbacks: first, having to maintain a TCP connection for the duration of the connec-
tion might use up resources in the host system (e.g. in the GossipRouter), leading to scalability problems, second,
this scheme is inappropriate when only a few channels are located behind firewalls, and the vast majority can in-
deed use IP multicast to communicate, and finally, it is not always possible to enable outgoing traffic on 2 ports in
a firewall, e.g. when a user does not 'own' the firewall.

5.4. The concurrent stack

The concurrent stack (introduced in 2.5) provides a number of improvements over previous releases, which has
some deficiencies:

• Large number of threads: each protocol had by default 2 threads, one for the up and one for the down queue.
They could be disabled per protocol by setting up_thread or down_thread to false. In the new model, these
threads have been removed.

Advanced Concepts

JBoss 56

• Sequential delivery of messages: JGroups used to have a single queue for incoming messages, processed by one
thread. Therefore, messages from different senders were still processed in FIFO order. In 2.5 these messages
can be processed in parallel.

• Out-of-band messages: when an application doesn't care about the ordering properties of a message, the OOB
flag can be set and JGroups will deliver this particular message without regard for any ordering.

5.4.1. Overview

The architecture of the concurrent stack is shown in Figure 5.3. The changes were made entirely inside of the trans-
port protocol (TP, with subclasses UDP, TCP and TCP_NIO). Therefore, to configure the concurrent stack, the user
has to modify the config for (e.g.) UDP in the XML file.

Figure 5.3. The concurrent stack

Advanced Concepts

JBoss 57

The concurrent stack consists of 2 thread pools (java.util.concurrent.Executor): the out-of-band (OOB) thread pool
and the regular thread pool. Packets are received by multicast or unicast receiver threads (UDP) or a ConnectionT-
able (TCP, TCP_NIO). Packets marked as OOB (with Message.setFlag(Message.OOB)) are dispatched to the OOB
thread pool, and all other packets are dispatched to the regular thread pool.

When a thread pool is disabled, then we use the thread of the caller (e.g. multicast or unicast receiver threads or the
ConnectionTable) to send the message up the stack and into the application. Otherwise, the packet will be pro-
cessed by a thread from the thread pool, which sends the message up the stack. When all current threads are busy,
another thread might be created, up to the maximum number of threads defined. Alternatively, the packet might get
queued up until a thread becomes available.

The point of using a thread pool is that the receiver threads should only receive the packets and forward them to the
thread pools for processing, because unmarshalling and processing is slower than simply receiving the message and
can benefit from parallelization.

5.4.1.1. Configuration

Note that this is preliminary and names or properties might change

We are thinking of exposing the thread pools programmatically, meaning that a developer might be able to set both
threads pools programmatically, e.g. using something like TP.setOOBThreadPool(Executor executor).

Here's an example of the new configuration:

<UDP
mcast_addr="228.10.10.10"
mcast_port="45588"

thread_pool.enabled="true"
thread_pool.min_threads="1"
thread_pool.max_threads="100"
thread_pool.keep_alive_time="20000"
thread_pool.queue_enabled="false"
thread_pool.queue_max_size="10"
thread_pool.rejection_policy="Run"

oob_thread_pool.enabled="true"
oob_thread_pool.min_threads="1"
oob_thread_pool.max_threads="4"
oob_thread_pool.keep_alive_time="30000"
oob_thread_pool.queue_enabled="true"
oob_thread_pool.queue_max_size="10"
oob_thread_pool.rejection_policy="Run"/>

The attributes for the 2 thread pools are prefixed with thread_pool and oob_thread_pool respectively.

The attributes are listed below. The roughly correspond to the options of a java.util.concurrent.ThreadPoolExecutor
in JDK 5.

Table 5.1. Attributes of thread pools

Advanced Concepts

JBoss 58

Name Description

enabled Whether of not to use a thread pool. If set to false, the
caller's thread is used.

min_threads The minimum number of threads to use.

max_threads The maximum number of threads to use.

keep_alive_time Number of milliseconds until an idle thread is re-
moved from the pool

queue_enabled Whether of not to use a (bounded) queue. If enabled,
when all minimum threads are busy, work items are
added to the queue. When the queue is full, additional
threads are created, up to max_threads. When
max_threads have been reached, the rejection policy
is consulted.

max_size The maximum number of elements in the queue. Ig-
nored if the queue is disabled

rejection_policy Determines what happens when the thread pool (and
queue, if enabled) is full. The default is to run on the
caller's thread. "Abort" throws an runtime exception.
"Discard" discards the message, "DiscardOldest" dis-
cards the oldest entry in the queue. Note that these
values might change, for example a "Wait" value
might get added in the future.

thread_naming_pattern Determines how threads are named that are running
from thread pools in concurrent stack. Valid values
include any combination of "cl" letters, where "c" in-
cludes the cluster name and "l" includes local address
of the channel. The default is "cl"

5.4.2. Elimination of up and down threads

By removing the 2 queues/protocol and the associated 2 threads, we effectively reduce the number of threads
needed to handle a message, and thus context switching overhead. We also get clear and unambiguous semantics
for Channel.send(): now, all messages are sent down the stack on the caller's thread and the send() call only returns
once the message has been put on the network. In addition, an exception will only be propagated back to the caller
if the message has not yet been placed in a retransmit buffer. Otherwise, JGroups simply logs the error message but
keeps retransmitting the message. Therefore, if the caller gets an exception, the message should be re-sent.

On the receiving side, a message is handled by a thread pool, either the regular or OOB thread pool. Both thread
pools can be completely eliminated, so that we can save even more threads and thus further reduce context switch-
ing. The point is that the developer is now able to control the threading behavior almost completely.

5.4.3. Concurrent message delivery

Advanced Concepts

JBoss 59

Up to version 2.5, all messages received were processed by a single thread, even if the messages were sent by dif-
ferent senders. For instance, if sender A sent messages 1,2 and 3, and B sent message 34 and 45, and if A's mes-
sages were all received first, then B's messages 34 and 35 could only be processed after messages 1-3 from A were
processed !

Now, we can process messages from different senders in parallel, e.g. messages 1, 2 and 3 from A can be processed
by one thread from the thread pool and messages 34 and 35 from B can be processed on a different thread.

As a result, we get a speedup of almost N for a cluster of N if every node is sending messages and we configure the
thread pool to have at least N threads. There is actually a unit test (ConcurrentStackTest.java) which demonstrates
this.

5.4.4. Scopes: concurrent message delivery for messages from the same
sender

In the previous paragraph, we showed how the concurrent stack delivers messages from different senders concur-
rently. But all (non-OOB) messages from the same sender P are delivered in the order in which P sent them.
However, this is not good enough for certain types of applications.

Consider the case of an application which replicates HTTP sessions. If we have sessions X, Y and Z, then updates
to these sessions are delivered in the order in which there were performed, e.g. X1, X2, X3, Y1, Z1, Z2, Z3, Y2,
Y3, X4. This means that update Y1 has to wait until updates X1-3 have been delivered. If these updates take some
time, e.g. spent in lock acquisition or deserialization, then all subsequent messages are delayed by the sum of the
times taken by the messages ahead of them in the delivery order.

However, in most cases, updates to different web sessions should be completely unrelated, so they could be de-
livered concurrently. For instance, a modification to session X should not have any effect on session Y, therefore
updates to X, Y and Z can be delivered concurrently.

One solution to this is out-of-band (OOB) messages (see next paragraph). However, OOB messages do not guaran-
tee ordering, so updates X1-3 could be delivered as X1, X3, X2. If this is not wanted, but messages pertaining to a
given web session should all be delivered concurrently between sessions, but ordered within a given session, then
we can resort to scoped messages.

Scoped messages apply only to regular (non-OOB) messages, and are delivered concurrently between scopes, but
ordered within a given scope. For example, if we used the sessions above (e.g. the jsessionid) as scopes, then the
delivery could be as follows ('->' means sequential, '||' means concurrent):

X1 -> X2 -> X3 -> X4 || Y1 -> Y2 -> Y3 || Z1 -> Z2 -> Z3

This means that all updates to X are delivered in parallel to updates to Y and updates to Z. However, within a given
scope, updates are delivered in the order in which they were performed, so X1 is delivered before X2, which is de-
liverd before X3 and so on.

Taking the above example, using scoped messages, update Y1 does not have to wait for updates X1-3 to complete,
but is processed immediately.

To set the scope of a message, use method Message.setScope(short).

Advanced Concepts

JBoss 60

Scopes are implemented in a separate protocol called Section 7.13.3. This protocol has to be placed somewhere
above ordering protocols like UNICAST or NAKACK (or SEQUENCER for that matter).

Uniqueness of scopes

Note that scopes should be as unique as possible. Compare this to hashing: the fewer collisions there are,
the better the concurrency will be. So, if for example, two web sessions pick the same scope, then updates
to those sessions will be delivered in the order in which they were sent, and not concurrently. While this
doesn't cause erraneous behavior, it defies the purpose of SCOPE.

Also note that, if multicast and unicast messages have the same scope, they will be delivered in sequence.
So if A multicasts messages to the group with scope 25, and A also unicasts messages to B with scope 25,
then A's multicasts and unicasts will be delivered in order at B ! Again, this is correct, but since multicasts
and unicasts are unrelated, might slow down things !

5.4.5. Out-of-band messages

OOB messages completely ignore any ordering constraints the stack might have. Any message marked as OOB
will be processed by the OOB thread pool. This is necessary in cases where we don't want the message processing
to wait until all other messages from the same sender have been processed, e.g. in the heartbeat case: if sender P
sends 5 messages and then a response to a heartbeat request received from some other node, then the time taken to
process P's 5 messages might take longer than the heartbeat timeout, so that P might get falsely suspected !
However, if the heartbeat response is marked as OOB, then it will get processed by the OOB thread pool and there-
fore might be concurrent to its previously sent 5 messages and not trigger a false suspicion.

The 2 unit tests UNICAST_OOB_Test and NAKACK_OOB_Test demonstrate how OOB messages influence the
ordering, for both unicast and multicast messages.

5.4.6. Replacing the default and OOB thread pools

In 2.7, there are 3 thread pools and 4 thread factories in TP:

Table 5.2. Thread pools and factories in TP

Name Description

Default thread pool This is the pools for handling incoming messages. It
can be fetched using getDefaultThreadPool() and re-
placed using setDefaultThreadPool(). When setting a
thread pool, the old thread pool (if any) will be shut-
down and all of it tasks cancelled first

OOB thread pool This is the pool for handling incoming OOB mes-
sages. Methods to get and set it are getOOBThread-
Pool() and setOOBThreadPool()

Timer thread pool This is the thread pool for the timer. The max number
of threads is set through the timer.num_threads prop-
erty. The timer thread pool cannot be set, it can only

Advanced Concepts

JBoss 61

Name Description

be retrieved using getTimer(). However, the thread
factory of the timer can be replaced (see below)

Default thread factory This is the thread factory
(org.jgroups.util.ThreadFactory) of the default thread
pool, which handles incoming messages. A thread
pool factory is used to name threads and possibly
make them daemons. It can be accessed using getDe-
faultThreadPoolThreadFactory() and setDefault-
ThreadPoolThreadFactory()

OOB thread factory This is the thread factory for the OOB thread pool. It
can be retrieved using getOOBThreadPoolThread-
Factory() and set using method setOOBThreadPool-
ThreadFactory()

Timer thread factory This is the thread factory for the timer thread pool. It
can be accessed using getTimerThreadFactory() and
setTimerThreadFactory()

Global thread factory The global thread factory can get used (e.g. by proto-
cols) to create threads which don't live in the trans-
port, e.g. the FD_SOCK server socket handler thread.
Each protocol has a method getTransport(). Once the
TP is obtained, getThreadFactory() can be called to
get the global thread factory. The global thread fact-
ory can be replaced with setThreadFactory()

5.4.7. Sharing of thread pools between channels in the same JVM

In 2.7, the default and OOB thread pools can be shared between instances running inside the same JVM. The ad-
vantage here is that multiple channels running within the same JVM can pool (and therefore save) threads. The dis-
advantage is that thread naming will not show to which channel instance an incoming thread belongs to.

Note that we can not just shared thread pools between JChannels within the same JVM, but we can also share entire
transports. For details see Section 5.2.

5.5. Misc

5.5.1. Shunning

Note that in 2.8, shunning has been removed, so the sections below only apply to versions up to 2.7.
Let's say we have 4 members in a group: {A,B,C,D}. When a member (say D) is expelled from the group, e.g. be-
cause it didn't respond to are-you-alive messages, and later comes back, then it is shunned. Shunning causes a
member to leave the group and re-join, if this is enabled on the Channel. To enable automatic re-connects, the
AUTO_RECONNECT option has to be set on the Channel:

Advanced Concepts

JBoss 62

12 Currently, SocketFactory does not support creation of NIO sockets / channels.

channel.setOpt(Channel.AUTO_RECONNECT, Boolean.TRUE);

To enable shunning, set FD.shun and GMS.shun to true.
Let's look at a more detailed example. Say member D is overloaded, and doesn't respond to are-you-alive messages
(done by the failure detection (FD) protocol). It is therefore suspected and excluded. The new view for A, B and C
will be {A,B,C}, however for D the view is still {A,B,C,D}. So when D comes back and sends messages to the
group, or any individiual member, those messages will be discarded, because A,B and C don't see D in their view.
D is shunned when A,B or C receive an are-you-alive message from D, or D shuns itself when it receives a view
which doesn't include D.

So shunning is always a unilateral decision. However, things may be different if all members exclude each other
from the group. For example, say we have a switch connecting A, B, C and D. If someone pulls all plugs on the
switch, or powers the switch down, then A, B, C and D will all form singleton groups, that is, each member thinks
it's the only member in the group. When the switch goes back to normal, then each member will shun everybody
else (a real shun fest :-)). This is clearly not desirable, so in this case shunning should be turned off:

<FD timeout="2000" max_tries="3" shun="false"/>
...
<pbcast.GMS join_timeout="3000" shun="false"/>

5.5.2. Using a custom socket factory

JGroups creates all of its sockets through a SocketFactory, which is located in the transport (TP) or
TP.ProtocolAdapter (in a shared transport). The factory has methods to create sockets (Socket, ServerSocket, Data-
gramSocket and MulticastSocket) 12, closen sockets and list all open sockets. Every socket creation method has a
service name, which could be for example "jgroups.fd_sock.srv_sock". The service name is used to look up a port
(e.g. in a config file) and create the correct socket.

To provide one's own socket factory, the following has to be done: if we have a non-shared transport, the code be-
low creates a SocketFactory implementation and sets it in the transport:

JChannel ch;
MySocketFactory factory; // e.g. extends DefaultSocketFactory
ch=new JChannel("config.xml");
ch.setSocketFactory(new MySocketFactory());
ch.connect("demo");

If a shared transport is used, then we have to set 2 socket factories: 1 in the shared transport and one in the
TP.ProtocolAdapter:

JChannel c1=new JChannel("config.xml"), c2=new JChannel("config.xml");

TP transport=c1.getProtocolStack().getTransport();
transport.setSocketFactory(new MySocketFactory("transport"));

c1.setSocketFactory(new MySocketFactory("first-cluster"));

Advanced Concepts

JBoss 63

c2.setSocketFactory(new MySocketFactory("second-cluster"));

c1.connect("first-cluster");
c2.connect("second-cluster");

First, we grab one of the channels to fetch the transport and set a SocketFactory in it. Then we set one SocketFact-
ory per channel that resides on the shared transport. When JChannel.connect() is called, the SocketFactory will be
set in TP.ProtocolAdapter.

5.6. Handling network partitions

Network partitions can be caused by switch, router or network interface crashes, among other things. If we have a
cluster {A,B,C,D,E} spread across 2 subnets {A,B,C} and {D,E} and the switch to which D and E are connected
crashes, then we end up with a network partition, with subclusters {A,B,C} and {D,E}.

A, B and C can ping each other, but not D or E, and vice versa. We now have 2 coordinators, A and D. Both sub-
clusters operate independently, for example, if we maintain a shared state, subcluster {A,B,C} replicate changes to
A, B and C.

This means, that if during the partition, some clients access {A,B,C}, and others {D,E}, then we end up with differ-
ent states in both subclusters. When a partition heals, the merge protocol (e.g. MERGE2) will notify A and D that
there were 2 subclusters and merge them back into {A,B,C,D,E}, with A being the new coordinator and D ceasing
to be coordinator.

The question is what happens with the 2 diverged substates ?

There are 2 solutions to merging substates: first we can attempt to create a new state from the 2 substates, and
secondly we can shut down all members of the non primary partition, such that they have to re-join and possibly
reacquire the state from a member in the primary partition.

In both cases, the application has to handle a MergeView (subclass of View), as shown in the code below:

public void viewAccepted(View view) {
if(view instanceof MergeView) {

MergeView tmp=(MergeView)view;
Vector<View> subgroups=tmp.getSubgroups();
// merge state or determine primary partition
// run this in a separate thread !

}
}

It is essential that the merge view handling code run on a separate thread if it needs more than a few milliseconds,
or else it would block the calling thread.

The MergeView contains a list of views, each view represents a subgroups and has the list of members which
formed this group.

5.6.1. Merging substates

Advanced Concepts

JBoss 64

The application has to merge the substates from the various subgroups ({A,B,C} and {D,E}) back into one single
state for {A,B,C,D,E}. This task has to be done by the application because JGroups knows nothing about the ap-
plication state, other than it is a byte buffer.

If the in-memory state is backed by a database, then the solution is easy: simply discard the in-memory state and
fetch it (eagerly or lazily) from the DB again. This of course assumes that the members of the 2 subgroups were
able to write their changes to the DB. However, this is often not the case, as connectivity to the DB might have
been severed by the network partition.

Another solution could involve tagging the state with time stamps. On merging, we could compare the time stamps
for the substates and let the substate with the more recent time stamps win.

Yet another solution could increase a counter for a state each time the state has been modified. The state with the
highest counter wins.

Again, the merging of state can only be done by the application. Whatever algorithm is picked to merge state, it has
to be deterministic.

5.6.2. The primary partition approach

The primary partition approach is simple: on merging, one subgroup is designated as the primary partition and all
others as non-primary partitions. The members in the primary partition don't do anything, whereas the members in
the non-primary partitions need to drop their state and re-initialize their state from fresh state obtained from a mem-
ber of the primary partition.

The code to find the primary partition needs to be deterministic, so that all members pick the same primary parti-
tion. This could be for example the first view in the MergeView, or we could sort all members of the new
MergeView and pick the subgroup which contained the new coordinator (the one from the consolidated
MergeView). Another possible solution could be to pick the largest subgroup, and, if there is a tie, sort the tied
views lexicographically (all Addresses have a compareTo() method) and pick the subgroup with the lowest ranked
member.

Here's code which picks as primary partition the first view in the MergeView, then re-acquires the state from the
new coordinator of the combined view:

public static void main(String[] args) throws Exception {
final JChannel ch=new JChannel("/home/bela/udp.xml");
ch.setReceiver(new ExtendedReceiverAdapter() {

public void viewAccepted(View new_view) {
handleView(ch, new_view);

}
});
ch.connect("x");
while(ch.isConnected())

Util.sleep(5000);
}

private static void handleView(JChannel ch, View new_view) {
if(new_view instanceof MergeView) {

ViewHandler handler=new ViewHandler(ch, (MergeView)new_view);
// requires separate thread as we don't want to block JGroups
handler.start();

}
}

Advanced Concepts

JBoss 65

private static class ViewHandler extends Thread {
JChannel ch;
MergeView view;

private ViewHandler(JChannel ch, MergeView view) {
this.ch=ch;
this.view=view;

}

public void run() {
Vector<View> subgroups=view.getSubgroups();
View tmp_view=subgroups.firstElement(); // picks the first
Address local_addr=ch.getLocalAddress();
if(!tmp_view.getMembers().contains(local_addr)) {

System.out.println("Not member of the new primary partition ("
+ tmp_view + "), will re-acquire the state");

try {
ch.getState(null, 30000);

}
catch(Exception ex) {
}

}
else {

System.out.println("Not member of the new primary partition ("
+ tmp_view + "), will do nothing");

}
}

}

The handleView() method is called from viewAccepted(), which is called whenever there is a new view. It spawns
a new thread which gets the subgroups from the MergeView, and picks the first subgroup to be the primary parti-
tion. Then, if it was a member of the primary partition, it does nothing, and if not, it reaqcuires the state from the
coordinator of the primary partition (A).

The downside to the primary partition approach is that work (= state changes) on the non-primary partition is dis-
carded on merging. However, that's only problematic if the data was purely in-memory data, and not backed by
persistent storage. If the latter's the case, use state merging discussed above.

It would be simpler to shut down the non-primary partition as soon as the network partition is detected, but that a
non trivial problem, as we don't know whether {D,E} simply crashed, or whether they're still alive, but were parti-
tioned away by the crash of a switch. This is called a split brain syndrome, and means that none of the members
has enough information to determine whether it is in the primary or non-primary partition, by simply exchanging
messages.

5.6.3. The Split Brain syndrome and primary partitions

In certain situations, we can avoid having multiple subgroups where every subgroup is able to make progress, and
on merging having to discard state of the non-primary partitions.

If we have a fixed membership, e.g. the cluster always consists of 5 nodes, then we can run code on a view recep-
tion that determines the primary partition. This code

• assumes that the primary partition has to have at least 3 nodes

Advanced Concepts

JBoss 66

• any cluster which has less than 3 nodes doesn't accept modfications. This could be done for shared state for ex-
ample, by simply making the {D,E} partition read-only. Clients can access the {D,E} partition and read state,
but not modify it.

• As an alternative, clusters without at least 3 members could shut down, so in this case D and E would leave the
cluster.

The algorithm is shown in pseudo code below:

On initialization:
- Mark the node as read-only

On view change V:
- If V has >= N members:

- If not read-write: get state from coord and switch to read-write
- Else: switch to read-only

Of course, the above mechanism requires that at least 3 nodes are up at any given time, so upgrades have to be
done in a staggered way, taking only one node down at a time. In the worst case, however, this mechanism leaves
the cluster read-only and notifies a system admin, who can fix the issue. This is still better than shutting the entire
cluster down.

5.7. Flushing: making sure every node in the cluster received a
message
When sending messages, the properties of the default stacks (udp.xml, tcp.xml) are that all messages are delivered
reliably to all (non-crashed) members. However, there are no guarantees with respect to the view in which a mes-
sage will get delivered. For example, when a member A with view V1={A,B,C} multicasts message M1 to the
group and D joins at about the same time, then D may or may not receive M1, and there is no guarantee that A, B
and C receive M1 in V1 or V2={A,B,C,D}.

To change this, we can turn on virtual synchrony (by adding FLUSH to the top of the stack), which guarantees that

• A message M sent in V1 will be delivered in V1. So, in the example above, M1 would get delivered in view
V1; by A, B and C, but not by D.

• The set of messages seen by members in V1 is the same for all members before a new view V2 is installed.
This is important, as it ensures that all members in a given view see the same messages. For example, in a
group {A,B,C}, C sends 5 messages. A receives all 5 messages, but B doesn't. Now C crashes before it can re-
transmit the messages to B. FLUSH will now ensure, that before installing V2={A,B} (excluding C), B gets C's
5 messages. This is done through the flush protocol, which has all members reconcile their messages before a
new view is installed. In this case, A will send C's 5 messages to B.

Sometimes it is important to know that every node in the cluster received all messages up to a certain point, even if
there is no new view being installed. To do this (initiate a manual flush), an application programmer can call Chan-
nel.startFlush() to start a flush and Channel.stopFlush() to terminate it.

Channel.startFlush() flushes all pending messages out of the system. This stops all senders (calling Channel.down()

Advanced Concepts

JBoss 67

13Note that block() will be called in a Receiver when the flush is about to start and unblock() will be called when it ends

during a flush will block until the flush has completed)13. When startFlush() returns, the caller knows that (a) no
messages will get sent anymore until stopFlush() is called and (b) all members have received all messages sent be-
fore startFlush() was called.

Channel.stopFlush() terminates the flush protocol, no blocked senders can resume sending messages.

Note that the FLUSH protocol has to be present on top of the stack, or else the flush will fail.

5.8. Large clusters

This section is a collection of best practices and tips and tricks for running large clusters on JGroups. By large
clusters, we mean several hundred nodes in a cluster.

5.8.1. Reducing chattiness

When we have a chatty protocol, scaling to a large number of nodes might be a problem: too many messages are
sent and - because they are generated in addition to the regular traffic - this can have a negative impact on the
cluster. A possible impact is that more of the regular messages are dropped, and have to be retransmitted, which
impacts performance. Or heartbeats are dropped, leading to false suspicions. So while the negative effects of chatty
protocols may not be seen in small clusters, they will be seen in large clusters !

5.8.1.1. Discovery

A discovery protocol (e.g. PING, TCPPING, MPING etc) is run at startup, to discover the initial membership, and
periodically by the merge protocol, to detect partitioned subclusters.

When we send a multicast discovery request to a large cluster, every node in the cluster might possibly reply with a
discovery response sent back to the sender. So, in a cluster of 300 nodes, the discovery requester might be up to
299 discovery responses ! Even worse, because num_ping_requests in Discovery is by default set to 2, so we're
sending 2 discovery requests, we might receive up to num_ping_requests * (N-1) discovery responses, even though
we might be able to find out the coordinator after a few responses already !

To reduce the large number of responses, we can set a max_rank property: the value defines which members are
going to send a discovery response. The rank is the index of a member in a cluster: in {A,B,C,D,E}, A's index is 1,
B's index is 2 and so on. A max_rank of 3 would trigger discovery responses from only A, B and C, but not from D
or E.

We highly recommend setting max_rank in large clusters.

This functionality was implemented in https://jira.jboss.org/browse/JGRP-1181.

5.8.1.2. Failure detection protocols

Failure detection protocols determine when a member is unresponsive, and subsequently suspect it. Usually (FD,
FD_ALL), messages (heartbeats) are used to determine the health of a member, but we can also use TCP connec-
tions (FD_SOCK) to connect to a member P, and suspect P when the connection is closed.

Advanced Concepts

JBoss 68

https://jira.jboss.org/browse/JGRP-1181

Heartbeating requires messages to be sent around, and we need to be careful to limit the number of messages sent
by a failure detection protocol (1) to detect crashed members and (2) when a member has been suspected. The fol-
lowing sections discuss how to configure FD_ALL and FD_SOCK, the most commonly used failure detection pro-
tocols, for use in large clusters.

5.8.1.2.1. FD_SOCK

5.8.1.2.2. FD_ALL

5.9. Bridging between remote clusters

In 2.12, the RELAY protocol was added to JGroups (for the properties see Section 7.13.4). It allows for bridging of
remote clusters. For example, if we have a cluster in New York (NYC) and another one in San Francisco (SFO),
then RELAY allows us to bridge NYC and SFO, so that multicast messages sent in NYC will be forwarded to SFO
and vice versa.

The NYC and SFO clusters could for example use IP multicasting (UDP as transport), and the bridge could use
TCP as transport. The SFO and NYC clusters don't even need to use the same cluster name.

Figure 5.4 shows how the two clusters are bridged.

Advanced Concepts

JBoss 69

Figure 5.4. Relaying between different clusters

The cluster on the left side with nodes A (the coordinator), B and C is called "NYC" and use IP multicasting (UDP
as transport). The cluster on the right side ("SFO") has nodes D (coordinator), E and F.

The bridge between the local clusters NYC and SFO is essentially another cluster with the coordinators (A and D)
of the local clusters as members. The bridge typically uses TCP as transport, but any of the supported JGroups
transports could be used (including UDP, if supported across a WAN, for instance).

Only a coordinator relays traffic between the local and remote cluster. When A crashes or leaves, then the next-
in-line (B) takes over and starts relaying.

Relaying is done via the RELAY protocol added to the top of the stack. The bridge is configured with the
bridge_props property, e.g. bridge_props="/home/bela/tcp.xml". This creates a JChannel inside RELAY.

Note that property "site" must be set in both subclusters. In the example above, we could set site="nyc" for the
NYC subcluster and site="sfo" for the SFO ubcluster.

The design is described in detail in JGroups/doc/design/RELAY.txt (part of the source distribution). In a nutshell,
multicast messages received in a local cluster are wrapped and forwarded to the remote cluster by a relay (= the co-

Advanced Concepts

JBoss 70

ordinator of a local cluster). When a remote cluster receives such a message, it is unwrapped and put onto the local
cluster.

JGroups uses subclasses of UUID (PayloadUUID) to ship the site name with an address. When we see an address
with site="nyc" on the SFO side, then RELAY will forward the message to the SFO subcluster, and vice versa.
When C multicasts a message in the NYC cluster, A will forward it to D, which will re-broadcast the message on
its local cluster, with the sender being D. This means that the sender of the local broadcast will appear as D (so all
retransmit requests got to D), but the original sender C is preserved in the header. At the RELAY protocol, the
sender will be replaced with the original sender (C) having site="nyc". When node F wants to reply to the sender of
the multicast, the destination of the message will be C, which is intercepted by the RELAY protocol and forwarded
to the current relay (D). D then picks the correct destination (C) and sends the message to the remote cluster, where
A makes sure C (the original sender) receives it.

An important design goal of RELAY is to be able to have completely autonomous clusters, so NYC doesn't for ex-
ample have to block waiting for credits from SFO, or a node in the SFO cluster doesn't have to ask a node in NYC
for retransmission of a missing message.

5.9.1. Views

RELAY presents a global view to the application, e.g. a view received by nodes could be {D,E,F,A,B,C}. This
view is the same on all nodes, and a global view is generated by taking the two local views, e.g. A|5 {A,B,C} and
D|2 {D,E,F}, comparing the coordinators' addresses (the UUIDs for A and D) and concatenating the views into a
list. So if D's UUID is greater than A's UUID, we first add D's members into the global view ({D,E,F}), and then
A's members.

Therefore, we'll always see all of A's members, followed by all of D's members, or the other way round.

To see which nodes are local and which ones remote, we can iterate through the addresses (PayloadUUID) and use
the site (PayloadUUID.getPayload()) name to for example differentiate between "nyc" and "sfo".

5.9.2. Configuration

To setup a relay, we need essentially 3 XML configuration files: 2 to configure the local clusters and 1 for the
bridge.

To configure the first local cluster, we can copy udp.xml from the JGroups distribution and add RELAY on top of
it: <RELAY bridge_props="/home/bela/tcp.xml" />. Let's say we call this config relay.xml.

The second local cluster can be configured by copying relay.xml to relay2.xml. Then change the mcast_addr and/or
mcast_port, so we actually have 2 different cluster in case we run instances of both clusters in the same network.
Of course, if the nodes of one cluster are run in a different network from the nodes of the other cluster, and they
cannot talk to each other, then we can simply use the same configuration.

The 'site' property needs to be configured in relay.xml and relay2.xml, and it has to be different. For example, re-
lay.xml could use site="nyc" and relay2.xml could use site="sfo".

The bridge is configured by taking the stock tcp.xml and making sure both local clusters can see each other through
TCP.

Advanced Concepts

JBoss 71

5.10. Daisychaining

Daisychaining refers to a way of disseminating messages sent to the entire cluster.

The idea behind it is that it is inefficient to broadcast a message in clusters where IP multicasting is not available.
For example, if we only have TCP available (as is the case in most clouds today), then we have to send a broadcast
(or group) message N-1 times. If we want to broadcast M to a cluster of 10, we send the same message 9 times.

Example: if we have {A,B,C,D,E,F}, and A broadcasts M, then it sends it to B, then to C, then to D etc. If we have
a 1 GB switch, and M is 1GB, then sending a broadcast to 9 members takes 9 seconds, even if we parallelize the
sending of M. This is due to the fact that the link to the switch only sustains 1GB / sec. (Note that I'm conveniently
ignoring the fact that the switch will start dropping packets if it is overloaded, causing TCP to retransmit, slowing
things down)...

Let's introduce the concept of a round. A round is the time it takes to send or receive a message. In the above ex-
ample, a round takes 1 second if we send 1 GB messages. In the existing N-1 approach, it takes X * (N-1) rounds to
send X messages to a cluster of N nodes. So to broadcast 10 messages a the cluster of 10, it takes 90 rounds.

Enter DAISYCHAIN.

The idea is that, instead of sending a message to N-1 members, we only send it to our neighbor, which forwards it
to its neighbor, and so on. For example, in {A,B,C,D,E}, D would broadcast a message by forwarding it to E, E
forwards it to A, A to B, B to C and C to D. We use a time-to-live field, which gets decremented on every forward,
and a message gets discarded when the time-to-live is 0.

The advantage is that, instead of taxing the link between a member and the switch to send N-1 messages, we dis-
tribute the traffic more evenly across the links between the nodes and the switch. Let's take a look at an example,
where A broadcasts messages m1 and m2 in cluster {A,B,C,D}, '-->' means sending:

5.10.1. Traditional N-1 approach

• Round 1: A(m1) --> B

• Round 2: A(m1) --> C

• Round 3: A(m1) --> D

• Round 4: A(m2) --> B

• Round 5: A(m2) --> C

• Round 6: A(m2) --> D

It takes 6 rounds to broadcast m1 and m2 to the cluster.

5.10.2. Daisychaining approach

Advanced Concepts

JBoss 72

• Round 1: A(m1) --> B

• Round 2: A(m2) --> B || B(m1) --> C

• Round 3: B(m2) --> C || C(m1) --> D

• Round 4: C(m2) --> D

In round 1, A send m1 to B.

In round 2, A sends m2 to B, but B also forwards m1 (received in round 1) to C.

In round 3, A is done. B forwards m2 to C and C forwards m1 to D (in parallel, denoted by '||').

In round 4, C forwards m2 to D.

5.10.3. Switch usage

Let's take a look at this in terms of switch usage: in the N-1 approach, A can only send 125MB/sec, no matter how
many members there are in the cluster, so it is constrained by the link capacity to the switch. (Note that A can also
receive 125MB/sec in parallel with today's full duplex links).

So the link between A and the switch gets hot.

In the daisychaining approach, link usage is more even: if we look for example at round 2, A sending to B and B
sending to C uses 2 different links, so there are no constraints regarding capacity of a link. The same goes for B
sending to C and C sending to D.

In terms of rounds, the daisy chaining approach uses X + (N-2) rounds, so for a cluster size of 10 and broadcasting
10 messages, it requires only 18 rounds, compared to 90 for the N-1 approach !

5.10.4. Performance

To measure performance of DAISYCHAIN, a performance test (test.Perf) was run, with 4 nodes connected to a 1
GB switch; and every node sending 1 million 8K messages, for a total of 32GB received by every node. The config
used was tcp.xml.

The N-1 approach yielded a throughput of 73 MB/node/sec, and the daisy chaining approach 107MB/node/sec !

5.10.5. Configuration

DAISYCHAIN can be placed directly on top of the transport, regardless of whether it is UDP or TCP, e.g.

<TCP .../>
<DAISYCHAIN .../>
<TCPPING .../>

Advanced Concepts

JBoss 73

5.11. Ergonomics

Ergonomics is similar to the dynamic setting of optimal values for the JVM, e.g. garbage collection, memory sizes
etc. In JGroups, ergonomics means that we try to dynamically determine and set optimal values for protocol prop-
erties. Examples are thread pool size, flow control credits, heartbeat frequency and so on.

Advanced Concepts

JBoss 74

6
Writing protocols

This chapter discusses how to write custom protocols

6.1. Anatomy of a protocol

6.2. Writing user defined headers

Headers are mainly used by protocols, to ship additional information around with a message, without having to
place it into the payload buffer, which is often occupied by the application already. However, headers can also be
used by an application, e.g. to add information to a message, without having to squeeze it into the payload buffer.

A header has to extend org.jgroups.Header, have an empty public constructor and (currently) implement the Ex-
ternalizable interface (writeExternal() and readExternal() methods). Note that the latter requirement
(Externalizable) will probably go away in 3.0.

A header should also override size(), which returns the total number of bytes taken up in the output stream when an
instance is marshalled using Streamable. Streamable is an interface for efficient marshalling with methods void

writeTo(DataOutputStream out) throws IOException; and void readFrom(DataInputStream in) throws

IOException, IllegalAccessException, InstantiationException;. Method writeTo() needs to write all relev-
ant instance variables to the output stream and readFrom() needs to read them back in. It is important that size() re-
turns the correct number of bytes, because some components such a message bundling in the transport depend on
this, as they need to measure the exact number of bytes before sending a message off. If size() returns fewer bytes
than what will actually be written to the stream, then it is possible that (if we use UDP with a 65535 bytes maxim-
um) the datagram packet is dropped by UDP !

The final requirement is to add the newly created header class to jg-magic-map.xml (in the ./conf directory), or - if
this is not a JGroups internal protocol - to add the class to ClassConfigurator. This can be done with method
ClassConfigurator.getInstance().put(1899, MyHeader.class).

The code below shows how an application defines a custom header, MyHeader, and uses it to attach additional in-
formation to message sent (to itself):

public class bla {

public static void main(String[] args) throws ChannelException, ClassNotFoundException {
JChannel ch=new JChannel();
ch.connect("demo");
ch.setReceiver(new ReceiverAdapter() {

public void receive(Message msg) {
MyHeader hdr=(MyHeader)msg.getHeader("x");
System.out.println("-- received message " + msg + ", header is " + hdr);

JBoss 75

}
});

ClassConfigurator.getInstance().add((short)1900, MyHeader.class);

int cnt=1;
for(int i=0; i < 5; i++) {

Message msg=new Message();
msg.putHeader((short)1900, new MyHeader(cnt++));
ch.send(msg);

}
ch.close();

}

public static class MyHeader extends Header implements Streamable {
int counter=0;

public MyHeader() {
}

private MyHeader(int counter) {
this.counter=counter;

}

public String toString() {
return "counter=" + counter;

}

public int size() {
return Global.INT_SIZE;

}

public void writeTo(DataOutputStream out) throws IOException {
out.writeInt(counter);

}

public void readFrom(DataInputStream in) throws IOException, IllegalAccessException, InstantiationException {
counter=in.readInt();

}
}

}

The MyHeader class has an empty public constructor and implements the writeExternal() and readExternal() meth-
ods with no-op implementations.

The state is represented as an integer counter. Method size() returns 4 bytes (Global.INT_SIZE), which is the num-
ber of bytes written by writeTo() and read by readFrom().

Before sending messages with instances of MyHeader attached, the program registers the MyHeader class with the
ClassConfigurator. The example uses a magic number of 1900, but any number greater than 1024 can be used. If
the magic number was already taken, an IllegalAccessException would be thrown.

The final part is adding an instance of MyHeader to a message using Message.putHeader(). The first argument is a
name which has to be unique across all headers for a given message. Usually, protocols use the protocol name (e.g.
"UDP", "NAKACK"), so these names should not be used by an application. The second argument is an instance of
the header.

Getting a header is done through Message.getHeader() which takes the name as argument. This name of course has

Writing protocols

JBoss 76

to be the same as the one used in putHeader().

Writing protocols

JBoss 77

[1] http://www.jboss.org/wiki/Wiki.jsp?page=JGroups

7
List of Protocols

This section is work in progress; we strive to update the documentation as we make changes to the code.

The most important properties are described on the wiki [1]. The idea is that users take one of the predefined con-
figurations (shipped with JGroups) and make only minor changes to it.

For each protocol define:

• Properties provided

• Required services

• Provided services

• Behavior

7.1. Transport

7.1.1. UDP

Table 7.1. Properties

Name Description

bind_addr The bind address which should be used by this trans-
port. The following special values are also recog-
nized: GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

bind_port The port to which the transport binds. Default of 0
binds to any (ephemeral) port

bundler_capacity The max number of elements in a bundler if the bund-
ler supports size limitations

bundler_type The type of bundler used. Has to be "old" (default) or
"new"

JBoss 78

http://www.jboss.org/wiki/Wiki.jsp?page=JGroups

Name Description

diagnostics_addr Address for diagnostic probing. Default is
224.0.75.75

diagnostics_port Port for diagnostic probing. Default is 7500

disable_loopback

discard_incompatible_packets Discard packets with a different version if true. De-
fault is false

enable_bundling Enable bundling of smaller messages into bigger
ones. Default is true

enable_diagnostics Switch to enable diagnostic probing. Default is true

enable_unicast_bundling Enable bundling of smaller messages into bigger ones
for unicast messages. Default is false

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

ip_mcast Multicast toggle. If false multiple unicast datagrams
are sent instead of one multicast. Default is true

ip_ttl The time-to-live (TTL) for multicast datagram pack-
ets. Default is 8

level Sets the logger level (see javadocs)

log_discard_msgs whether or not warnings about messages from differ-
ent groups are logged

logical_addr_cache_expiration Time (in ms) after which entries in the logical address
cache marked as removable are removed

logical_addr_cache_max_size Max number of elements in the logical address cache
before eviction starts

loopback Messages to self are looped back immediately if true

max_bundle_size Maximum number of bytes for messages to be
queued until they are sent

max_bundle_timeout Max number of milliseconds until queued messages
are sent

mcast_group_addr The multicast address used for sending and receiving
packets. Default is 228.8.8.8

mcast_port The multicast port used for sending and receiving
packets. Default is 7600

mcast_recv_buf_size Receive buffer size of the multicast datagram socket.

List of Protocols

JBoss 79

Name Description

Default is 500'000 bytes

mcast_send_buf_size Send buffer size of the multicast datagram socket.
Default is 100'000 bytes

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

oob_thread_pool.keep_alive_time Timeout in ms to remove idle threads from the OOB
pool

oob_thread_pool.max_threads Max thread pool size for the OOB thread pool

oob_thread_pool.min_threads Minimum thread pool size for the OOB thread pool

oob_thread_pool_enabled Switch for enabling thread pool for OOB messages.
Default=true

oob_thread_pool_queue_enabled Use queue to enqueue incoming OOB messages

oob_thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

oob_thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

port_range The range of valid ports, from bind_port to end_port.
Infinite if 0

receive_interfaces Comma delimited list of interfaces (IP addresses or
interface names) to receive multicasts on

receive_on_all_interfaces If true, the transport should use all available inter-
faces to receive multicast messages

singleton_name If assigned enable this transport to be a singleton
(shared) transport

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

thread_naming_pattern Thread naming pattern for threads in this channel.
Default is cl

thread_pool.keep_alive_time Timeout in milliseconds to remove idle thread from
regular pool

thread_pool.max_threads Maximum thread pool size for the regular thread pool

thread_pool.min_threads Minimum thread pool size for the regular thread pool

thread_pool_enabled Switch for enabling thread pool for regular messages.
Default true

thread_pool_queue_enabled Use queue to enqueue incoming regular messages.

List of Protocols

JBoss 80

Name Description

Default is true

thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

tick_time Tick duration in the HashedTimingWheel timer. Only
applicable if timer_type is "wheel"

timer.keep_alive_time Timeout in ms to remove idle threads from the timer
pool

timer.max_threads Max thread pool size for the timer thread pool

timer.min_threads Minimum thread pool size for the timer thread pool

timer_queue_max_size Max number of elements on a timer queue

timer_type Type of timer to be used. Valid values are "old"
(DefaultTimeScheduler, used up to 2.10), "new"
(TimeScheduler2) and "wheel". Note that this prop-
erty might disappear in future releases, if one of the 3
timers is chosen as default timer

tos Traffic class for sending unicast and multicast data-
grams. Default is 8

ucast_recv_buf_size Receive buffer size of the unicast datagram socket.
Default is 64'000 bytes

ucast_send_buf_size Send buffer size of the unicast datagram socket. De-
fault is 100'000 bytes

wheel_size Number of ticks in the HashedTimingWheel timer.
Only applicable if timer_type is "wheel"

7.1.2. TCP

Table 7.2. Properties

Name Description

bind_addr The bind address which should be used by this trans-
port. The following special values are also recog-
nized: GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

List of Protocols

JBoss 81

Name Description

bind_port The port to which the transport binds. Default of 0
binds to any (ephemeral) port

bundler_capacity The max number of elements in a bundler if the bund-
ler supports size limitations

bundler_type The type of bundler used. Has to be "old" (default) or
"new"

conn_expire_time Max time connection can be idle before being reaped
(in ms)

diagnostics_addr Address for diagnostic probing. Default is
224.0.75.75

diagnostics_port Port for diagnostic probing. Default is 7500

discard_incompatible_packets Discard packets with a different version if true. De-
fault is false

enable_bundling Enable bundling of smaller messages into bigger
ones. Default is true

enable_diagnostics Switch to enable diagnostic probing. Default is true

enable_unicast_bundling Enable bundling of smaller messages into bigger ones
for unicast messages. Default is false

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

external_addr Use "external_addr" if you have hosts on different
networks, behind firewalls. On each firewall, set up a
port forwarding rule (sometimes called "virtual serv-
er") to the local IP (e.g. 192.168.1.100) of the host
then on each host, set "external_addr" TCP transport
parameter to the external (public IP) address of the
firewall.

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

linger SO_LINGER in msec. Default of -1 disables it

log_discard_msgs whether or not warnings about messages from differ-
ent groups are logged

logical_addr_cache_expiration Time (in ms) after which entries in the logical address
cache marked as removable are removed

logical_addr_cache_max_size Max number of elements in the logical address cache
before eviction starts

List of Protocols

JBoss 82

Name Description

loopback Messages to self are looped back immediately if true

max_bundle_size Maximum number of bytes for messages to be
queued until they are sent

max_bundle_timeout Max number of milliseconds until queued messages
are sent

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

oob_thread_pool.keep_alive_time Timeout in ms to remove idle threads from the OOB
pool

oob_thread_pool.max_threads Max thread pool size for the OOB thread pool

oob_thread_pool.min_threads Minimum thread pool size for the OOB thread pool

oob_thread_pool_enabled Switch for enabling thread pool for OOB messages.
Default=true

oob_thread_pool_queue_enabled Use queue to enqueue incoming OOB messages

oob_thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

oob_thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

peer_addr_read_timeout Max time to block on reading of peer address

port_range The range of valid ports, from bind_port to end_port.
Infinite if 0

reaper_interval Reaper interval in msec. Default is 0 (no reaping)

receive_interfaces Comma delimited list of interfaces (IP addresses or
interface names) to receive multicasts on

receive_on_all_interfaces If true, the transport should use all available inter-
faces to receive multicast messages

recv_buf_size Receiver buffer size in bytes

send_buf_size Send buffer size in bytes

send_queue_size Max number of messages in a send queue

singleton_name If assigned enable this transport to be a singleton
(shared) transport

sock_conn_timeout Max time allowed for a socket creation in connection
table

stats Determines whether to collect statistics (and expose

List of Protocols

JBoss 83

Name Description

them via JMX). Default is true

tcp_nodelay Should TCP no delay flag be turned on

thread_naming_pattern Thread naming pattern for threads in this channel.
Default is cl

thread_pool.keep_alive_time Timeout in milliseconds to remove idle thread from
regular pool

thread_pool.max_threads Maximum thread pool size for the regular thread pool

thread_pool.min_threads Minimum thread pool size for the regular thread pool

thread_pool_enabled Switch for enabling thread pool for regular messages.
Default true

thread_pool_queue_enabled Use queue to enqueue incoming regular messages.
Default is true

thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

tick_time Tick duration in the HashedTimingWheel timer. Only
applicable if timer_type is "wheel"

timer.keep_alive_time Timeout in ms to remove idle threads from the timer
pool

timer.max_threads Max thread pool size for the timer thread pool

timer.min_threads Minimum thread pool size for the timer thread pool

timer_queue_max_size Max number of elements on a timer queue

timer_type Type of timer to be used. Valid values are "old"
(DefaultTimeScheduler, used up to 2.10), "new"
(TimeScheduler2) and "wheel". Note that this prop-
erty might disappear in future releases, if one of the 3
timers is chosen as default timer

use_send_queues Should separate send queues be used for each connec-
tion

wheel_size Number of ticks in the HashedTimingWheel timer.
Only applicable if timer_type is "wheel"

7.1.3. TUNNEL

List of Protocols

JBoss 84

Table 7.3. Properties (experimental)

Name Description

bind_addr The bind address which should be used by this trans-
port. The following special values are also recog-
nized: GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

bind_port The port to which the transport binds. Default of 0
binds to any (ephemeral) port

bundler_capacity The max number of elements in a bundler if the bund-
ler supports size limitations

bundler_type The type of bundler used. Has to be "old" (default) or
"new"

diagnostics_addr Address for diagnostic probing. Default is
224.0.75.75

diagnostics_port Port for diagnostic probing. Default is 7500

discard_incompatible_packets Discard packets with a different version if true. De-
fault is false

enable_bundling Enable bundling of smaller messages into bigger
ones. Default is true

enable_diagnostics Switch to enable diagnostic probing. Default is true

enable_unicast_bundling Enable bundling of smaller messages into bigger ones
for unicast messages. Default is false

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

log_discard_msgs whether or not warnings about messages from differ-
ent groups are logged

logical_addr_cache_expiration Time (in ms) after which entries in the logical address
cache marked as removable are removed

logical_addr_cache_max_size Max number of elements in the logical address cache
before eviction starts

loopback Messages to self are looped back immediately if true

List of Protocols

JBoss 85

Name Description

max_bundle_size Maximum number of bytes for messages to be
queued until they are sent

max_bundle_timeout Max number of milliseconds until queued messages
are sent

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

oob_thread_pool.keep_alive_time Timeout in ms to remove idle threads from the OOB
pool

oob_thread_pool.max_threads Max thread pool size for the OOB thread pool

oob_thread_pool.min_threads Minimum thread pool size for the OOB thread pool

oob_thread_pool_enabled Switch for enabling thread pool for OOB messages.
Default=true

oob_thread_pool_queue_enabled Use queue to enqueue incoming OOB messages

oob_thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

oob_thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

port_range The range of valid ports, from bind_port to end_port.
Infinite if 0

receive_interfaces Comma delimited list of interfaces (IP addresses or
interface names) to receive multicasts on

receive_on_all_interfaces If true, the transport should use all available inter-
faces to receive multicast messages

reconnect_interval Interval in msec to attempt connecting back to router
in case of torn connection. Default is 5000 msec

router_host Router host address

router_port Router port

singleton_name If assigned enable this transport to be a singleton
(shared) transport

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

tcp_nodelay Should TCP no delay flag be turned on

thread_naming_pattern Thread naming pattern for threads in this channel.
Default is cl

thread_pool.keep_alive_time Timeout in milliseconds to remove idle thread from

List of Protocols

JBoss 86

Name Description

regular pool

thread_pool.max_threads Maximum thread pool size for the regular thread pool

thread_pool.min_threads Minimum thread pool size for the regular thread pool

thread_pool_enabled Switch for enabling thread pool for regular messages.
Default true

thread_pool_queue_enabled Use queue to enqueue incoming regular messages.
Default is true

thread_pool_queue_max_size Maximum queue size for incoming OOB messages.
Default is 500

thread_pool_rejection_policy Thread rejection policy. Possible values are Abort,
Discard, DiscardOldest and Run. Default is Discard

tick_time Tick duration in the HashedTimingWheel timer. Only
applicable if timer_type is "wheel"

timer.keep_alive_time Timeout in ms to remove idle threads from the timer
pool

timer.max_threads Max thread pool size for the timer thread pool

timer.min_threads Minimum thread pool size for the timer thread pool

timer_queue_max_size Max number of elements on a timer queue

timer_type Type of timer to be used. Valid values are "old"
(DefaultTimeScheduler, used up to 2.10), "new"
(TimeScheduler2) and "wheel". Note that this prop-
erty might disappear in future releases, if one of the 3
timers is chosen as default timer

wheel_size Number of ticks in the HashedTimingWheel timer.
Only applicable if timer_type is "wheel"

7.2. Initial membership discovery
The task of the discovery is to find an initial membership, which is used to determine the current coordinator. Once
a coordinator is found, the joiner sends a JOIN request to the coord.

7.2.1. PING

Table 7.4. Properties

List of Protocols

JBoss 87

Name Description

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

discovery_timeout Time (in ms) to wait for our own discovery message
to be received. 0 means don't wait. If the discovery
message is not received within discovery_timeout ms,
a warning will be logged

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.2.2. FILE_PING
This uses a shared directory into which all members write their addresses. New joiners read all addresses from this
directory (which needs to be shared, e.g. via NFS or SMB) and ping each of the elements of the resulting set of
members. When a member leaves, it deletes its corresponding file.

List of Protocols

JBoss 88

FILE_PING can be used instead of GossipRouter in cases where no external process is desired.

Table 7.5. Properties

Name Description

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

discovery_timeout Time (in ms) to wait for our own discovery message
to be received. 0 means don't wait. If the discovery
message is not received within discovery_timeout ms,
a warning will be logged

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

List of Protocols

JBoss 89

7.2.3. JDBC_PING
This uses a shared Database into which all members write their addresses. New joiners read all addresses from this
Database and ping each of the elements of the resulting set of members. When a member leaves, it deletes its cor-
responding record.

JDBC_PING is an alternative to S3_PING by using Amazon RDS instead of S3.

Table 7.6. Properties

Name Description

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

connection_driver The JDBC connection driver name

connection_password The JDBC connection password

connection_url The JDBC connection URL

connection_username The JDBC connection username

datasource_jndi_name To use a DataSource registered in JNDI, specify the
JNDI name here. This is an alternative to all connec-
tion_* configuration options: if this property is not
empty, then all connection relatedproperties must be
empty.

delete_single_sql SQL used to delete a row. Customizable, but keep the
order of parameters and pick compatible types:
1)Own Address, as String 2)Cluster name, as String

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

initialize_sql If not empty, this SQL statement will be performed at
startup.Customize it to create the needed table on
those databases which permit table creation attempt
without loosing data, such as PostgreSQL and
MySQL (using IF NOT EXISTS). To allow for cre-
ation attempts, errors performing this statement will
be loggedbut not considered fatal. To avoid any DDL
operation, set this to an empty string.

insert_single_sql SQL used to insert a new row. Customizable, but
keep the order of parameters and pick compatible
types: 1)Own Address, as String 2)Cluster name, as
String 3)Serialized PingData as byte[]

interval Interval (in milliseconds) at which the own Address is

List of Protocols

JBoss 90

Name Description

written. 0 disables it.

level Sets the logger level (see javadocs)

location The absolute path of the shared file

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

select_all_pingdata_sql SQL used to fetch all node's PingData. Customizable,
but keep the order of parameters and pick compatible
types: only one parameter needed, String compatible,
representing the Cluster name. Must return a byte[],
the Serialized PingData as it was stored by the in-
sert_single_sql statement

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.2.4. TCPPING

Table 7.7. Properties

Name Description

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

List of Protocols

JBoss 91

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

initial_hosts Comma delimited list of hosts to be contacted for ini-
tial membership

level Sets the logger level (see javadocs)

max_dynamic_hosts max number of hosts to keep beyond the ones in ini-
tial_hosts

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

port_range Number of ports to be probed for initial membership.
Default is 1

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.2.5. TCPGOSSIP

Table 7.8. Properties

List of Protocols

JBoss 92

Name Description

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

initial_hosts Comma delimited list of hosts to be contacted for ini-
tial membership

level Sets the logger level (see javadocs)

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

reconnect_interval Interval (ms) by which a disconnected stub attempts
to reconnect to the GossipRouter

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

sock_conn_timeout Max time for socket creation. Default is 1000 msec

sock_read_timeout Max time in milliseconds to block on a read. 0 blocks
forever

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

List of Protocols

JBoss 93

7.2.6. MPING

Table 7.9. Properties

Name Description

bind_addr Bind address for multicast socket. The following spe-
cial values are also recognized: GLOBAL,
SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

discovery_timeout Time (in ms) to wait for our own discovery message
to be received. 0 means don't wait. If the discovery
message is not received within discovery_timeout ms,
a warning will be logged

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

ip_ttl Time to live for discovery packets. Default is 8

level Sets the logger level (see javadocs)

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

mcast_addr

mcast_port Multicast port for discovery packets. Default is 7555

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

List of Protocols

JBoss 94

Name Description

receive_interfaces List of interfaces to receive multicasts on

receive_on_all_interfaces If true, the transport should use all available inter-
faces to receive multicast messages. Default is false

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

send_interfaces List of interfaces to send multicasts on

send_on_all_interfaces Whether send messages are sent on all interfaces. De-
fault is false

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.2.7. BPING

BPING uses UDP broadcasts to discover other nodes. The default broadcast address (dest) is 255.255.255.255, and
should be replaced with a subnet specific broadcast, e.g. 192.168.1.255.

Table 7.10. Properties (experimental)

Name Description

bind_port Port for discovery packets

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

dest Target address for broadcasts. This should be restric-
ted to the local subnet, e.g. 192.168.1.255

discovery_timeout Time (in ms) to wait for our own discovery message
to be received. 0 means don't wait. If the discovery
message is not received within discovery_timeout ms,
a warning will be logged

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_rank Only members with a rank <= max_rank will send a

List of Protocols

JBoss 95

Name Description

discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

port_range Sends discovery packets to ports 8555 to
(8555+port_range)

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.2.8. S3_PING
This uses an Amazon S3 bucket into which all members write their addresses. New joiners read all addresses from
this bucket and ping each of the elements of the resulting set of members. When a member leaves, it deletes its cor-
responding file.

S3_PING is primarily meant to be used on Amazon EC2 where multicast traffic is not allowed and no external pro-
cess (GossipRouter) is desired. When Amazon RDS is preferred over S3, or if a shared database is used, an altern-
ative is to use JDBC_PING.

Table 7.11. Properties (experimental)

Name Description

access_key The access key to AWS (S3)

break_on_coord_rsp Return from the discovery phase as soon as we have 1
coordinator response

ergonomics Enables ergonomics: dynamically find the best values

List of Protocols

JBoss 96

Name Description

for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

interval Interval (in milliseconds) at which the own Address is
written. 0 disables it.

level Sets the logger level (see javadocs)

location The absolute path of the shared file

max_rank Only members with a rank <= max_rank will send a
discovery response. 1 means only the coordinator will
reply. 0 disables this; everyone replies. JIRA: ht-
tps://jira.jboss.org/browse/JGRP-1181

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_initial_members Minimum number of initial members to get a re-
sponse from. Default is 2

num_initial_srv_members Minimum number of server responses
(PingData.isServer()=true). If this value is greater
than 0, we'll ignore num_initial_members

num_ping_requests Number of discovery requests to be sent distributed
over timeout. Default is 2

pre_signed_delete_url When non-null, we use this pre-signed URL for DE-
LETEs

pre_signed_put_url When non-null, we use this pre-signed URL for PUTs

prefix When non-null, we set location to prefix-UUID

return_entire_cache Whether or not to return the entire logical-physical
address cache mappings on a discovery request, or
not. Default is false, except for TCPPING

secret_access_key The secret access key to AWS (S3)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to wait for the initial members. Default is
3000 msec

7.3. Merging after a network partition

List of Protocols

JBoss 97

7.3.1. MERGE2

Table 7.12. Properties

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

inconsistent_view_threshold Number of inconsistent views with only 1 coord after
a MERGE event is sent up

level Sets the logger level (see javadocs)

max_interval Maximum time in ms between runs to discover other
clusters

merge_fast When receiving a multicast message, checks if the
sender is member of the cluster. If not, initiates a
merge

merge_fast_delay The delay (in milliseconds) after which a merge fast
execution is started

min_interval Minimum time in msbetween runs to discover other
clusters

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.4. Failure Detection
The task of failure detection is to probe members of a group and see whether they are alive. When a member is sus-
pected (= deemed dead), then a SUSPECT message is sent to all nodes of the cluster. It is not the task of the failure
detection layer to exclude a crashed member (this is done by the group membership protocol, GMS), but simply to
notify everyone that a node in the cluster is suspected of having crashed.

7.4.1. FD

Failure detection based on heartbeat messages. If reply is not received without timeout ms, max_tries times, a
member is declared suspected, and will be excluded by GMS

Each member send a message containing a "FD" - HEARTBEAT header to its neighbor to the right (identified by

List of Protocols

JBoss 98

the ping_dest address). The heartbeats are sent by the inner class Monitor. When the neighbor receives the
HEARTBEAT, it replies with a message containing a "FD" - HEARTBEAT_ACK header. The first member
watches for "FD" - HEARTBEAT_ACK replies from its neigbor. For each received reply, it resets the last_ack
timestamp (sets it to current time) and num_tries counter (sets it to 0). The same Monitor instance that sends heart-
beats whatches the difference between current time and last_ack. If this difference grows over timeout, the Monitor
cycles several more times (until max_tries) is reached) and then sends a SUSPECT message for the neighbor's ad-
dress. The SUSPECT message is sent down the stack, is addressed to all members, and is as a regular message with
a FdHeader.SUSPECT header.

Table 7.13. Properties

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_tries Number of times to send an are-you-alive message

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout to suspect a node P if neither a heartbeat nor
data were received from P. Default is 3000 msec

7.4.2. FD_ALL

Failure detection based on simple heartbeat protocol. Every member periodically multicasts a heartbeat. Every
member also maintains a table of all members (minus itself). When data or a heartbeat from P are received, we re-
set the timestamp for P to the current time. Periodically, we check for expired members, and suspect those.

Example: <FD_ALL interval="3000" timeout="10000"/>

In the example above, we send a heartbeat every 3 seconds and suspect members if we haven't received a heartbeat
(or traffic) for more than 10 seconds. Note that since we check the timestamps every 'interval' milliseconds, we will
suspect a member after roughly 4 * 3s == 12 seconds. If we set the timeout to 8500, then we would suspect a mem-
ber after 3 * 3 secs == 9 seconds.

Table 7.14. Properties

List of Protocols

JBoss 99

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

interval Interval in which a HEARTBEAT is sent to the
cluster

level Sets the logger level (see javadocs)

msg_counts_as_heartbeat Treat messages received from members as heartbeats.
Note that this means we're updating a value in a
hashmap every time a message is passing up the stack
through FD_ALL, which is costly. Default is false

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Timeout after which a node P is suspected if neither a
heartbeat nor data were received from P

7.4.3. FD_SIMPLE

7.4.4. FD_PING
FD_PING uses a script or command that is run with 1 argument (the host to be pinged) and needs to return 0
(success) or 1 (failure). The default command is /sbin/ping (ping.exe on Windows), but this is user configurable
and can be replaced with any user-provided script or executable.

7.4.5. FD_ICMP
Uses InetAddress.isReachable() to determine whether a host is up or not. Note that this is only available in JDK 5,
so reflection is used to determine whether InetAddress provides such a method. If not, an exception will be thrown
at protocol initialization time.

The problem with InetAddress.isReachable() is that it may or may not use ICMP in its implementation ! For ex-
ample, an implementation might try to establish a TCP connection to port 9 (echo service), and - if the echo service
is not running - the host would be suspected, although a real ICMP packet would not have suspected the host !
Please check your JDK/OS combo before running this protocol.

Table 7.15. Properties

List of Protocols

JBoss 100

Name Description

bind_addr The network interface to be used for sending ICMP
packets, e.g. bind_addr="192.16.8.0.2"

7.4.6. FD_SOCK

Failure detection protocol based on a ring of TCP sockets created between group members. Each member in a
group connects to its neighbor (last member connects to first) thus forming a ring. Member B is suspected when its
neighbor A detects abnormally closed TCP socket (presumably due to a node B crash). However, if a member B is
about to leave gracefully, it lets its neighbor A know, so that it does not become suspected.

If you are using a multi NIC machine note that JGroups versions prior to 2.2.8 have FD_SOCK implementation
that does not assume this possibility. Therefore JVM can possibly select NIC unreachable to its neighbor and setup
FD_SOCK server socket on it. Neighbor would be unable to connect to that server socket thus resulting in immedi-
ate suspecting of a member. Suspected member is kicked out of the group, tries to rejoin, and thus goes into join/
leave loop. JGroups version 2.2.8 introduces srv_sock_bind_addr property so you can specify network interface
where FD_SOCK TCP server socket should be bound. This network interface is most likely the same interface
used for other JGroups traffic. JGroups versions 2.2.9 and newer consult bind.address system property or you can
specify network interface directly as FD_SOCK bind_addr property.

Table 7.16. Properties

Name Description

bind_addr The NIC on which the ServerSocket should listen on.
The following special values are also recognized:
GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

client_bind_port Start port for client socket. Default value of 0 picks a
random port

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

get_cache_timeout Timeout for getting socket cache from coordinator.
Default is 1000 msec

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

keep_alive Whether to use KEEP_ALIVE on the ping socket or
not. Default is true

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack

List of Protocols

JBoss 101

Name Description

(also change ID)

num_tries Number of attempts coordinator is solicited for socket
cache until we give up. Default is 3

port_range Number of ports to probe for start_port and cli-
ent_bind_port

sock_conn_timeout Max time in millis to wait for ping Socket.connect()
to return

start_port Start port for server socket. Default value of 0 picks a
random port

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

suspect_msg_interval Interval for broadcasting suspect messages. Default is
5000 msec

7.4.7. VERIFY_SUSPECT

Table 7.17. Properties

Name Description

bind_addr Interface for ICMP pings. Used if use_icmp is true
The following special values are also recognized:
GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_msgs Number of verify heartbeats sent to a suspected mem-
ber

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

List of Protocols

JBoss 102

14 Note that NAKACK can also be configured to send retransmission requests for M to anyone in the cluster, rather than only to the sender of
M.

Name Description

timeout Number of millisecs to wait for a response from a
suspected member

use_icmp Use InetAddress.isReachable() to verify suspected
member instead of regular messages

7.5. Reliable message transmission

7.5.1. pbcast.NAKACK

NAKACK provides reliable delivery and FIFO (= First In First Out) properties for messages sent to all nodes in a
cluster.

Reliable delivery means that no message sent by a sender will ever be lost, as all messages are numbered with se-
quence numbers (by sender) and retransmission requests are sent to the sender of a message14 if that sequence
number is not received.

FIFO order means that all messages from a given sender are received in exactly the order in which they were sent.

Table 7.18. Properties

Name Description

discard_delivered_msgs Should messages delivered to application be dis-
carded

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

exponential_backoff The first value (in milliseconds) to use in the expo-
nential backoff. Enabled if greater than 0. Default is 0

gc_lag Garbage collection lag

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

log_discard_msgs discards warnings about promiscuous traffic

log_not_found_msgs If true, trashes warnings about retransmission mes-
sages not found in the xmit_table (used for testing)

max_msg_batch_size Max number of messages to be removed from a Na-
kReceiverWindow. This property might get removed
anytime, so don't use it !

List of Protocols

JBoss 103

Name Description

max_rebroadcast_timeout Timeout to rebroadcast messages. Default is 2000
msec

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

print_stability_history_on_failed_xmit Should stability history be printed if we fail in re-
transmission. Default is false

retransmit_timeouts Timeout before requesting retransmissions. Default is
600, 1200, 2400, 4800

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

use_mcast_xmit Retransmit messages using multicast rather than uni-
cast

use_mcast_xmit_req Use a multicast to request retransmission of missing
messages. Default is false

use_range_based_retransmitter Whether to use the old retransmitter which retrans-
mits individual messages or the new one which uses
ranges of retransmitted messages. Default is true.
Note that this property will be removed in 3.0; it is
only used to switch back to the old (and proven) re-
transmitter mechanism if issues occur

use_stats_for_retransmission Use statistics gathered from actual retransmission
times to compute new retransmission times. Default
is false

xmit_from_random_member Ask a random member for retransmission of a miss-
ing message. Default is false

xmit_history_max_size Size of retransmission history. Default is 50 entries

xmit_table_max_compaction_time Number of milliseconds after which the matrix in the
retransmission table is compacted (only for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in the re-
transmission table (only for experts). The capacity of
the matrix is xmit_table_num_rows *
xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the retransmission
table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the retransmission table
(only for experts)

List of Protocols

JBoss 104

7.5.2. UNICAST

UNICAST provides reliable delivery and FIFO (= First In First Out) properties for point-to-point messages
between one sender and one receiver.

Reliable delivery means that no message sent by a sender will ever be lost, as all messages are numbered with se-
quence numbers (by sender) and retransmission requests are sent to the sender of a message15 if that sequence
number is not received.

FIFO order means that all messages from a given sender are received in exactly the order in which they were sent.

On top of a reliable transport, such as TCP, UNICAST is not really needed. However, concurrent delivery of mes-
sages from the same sender is prevented by UNICAST by acquiring a lock on the sender's retransmission table, so
unless concurrent delivery is desired, UNICAST should not be removed from the stack even if TCP is used.

Table 7.19. Properties

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

loopback Whether to loop back messages sent to self. Default is
false

max_msg_batch_size Max number of messages to be removed from the
AckReceiverWindow. This property might get re-
moved anytime, so don't use it !

max_retransmit_time Max number of milliseconds we try to retransmit a
message to any given member. After that, the connec-
tion is removed. Any new connection to that member
will start with seqno #1 again. 0 disables this

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.5.3. UNICAST2

UNICAST2 provides lossless, ordered, communication between 2 members. Contrary to UNICAST, it uses negat-
ive acks (similar to NAKACK) rather than positive acks. This reduces the communication overhead required for
sending an ack for every message.

List of Protocols

JBoss 105

Table 7.20. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_bytes Max number of bytes before a stability message is
sent to the sender

max_msg_batch_size Max number of messages to be removed from a Na-
kReceiverWindow. This property might get removed
anytime, so don't use it !

max_retransmit_time Max number of milliseconds we try to retransmit a
message to any given member. After that, the connec-
tion is removed. Any new connection to that member
will start with seqno #1 again. 0 disables this

max_stable_msgs Max number of STABLE messages sent for the same
highest_received seqno. A value < 1 is invalid

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stable_interval Max number of milliseconds before a stability mes-
sage is sent to the sender(s)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

use_range_based_retransmitter Whether to use the old retransmitter which retrans-
mits individual messages or the new one which uses
ranges of retransmitted messages. Default is true.
Note that this property will be removed in 3.0; it is
only used to switch back to the old (and proven) re-
transmitter mechanism if issues occur

xmit_table_automatic_purging If enabled, the removal of a message from the retrans-
mission table causes an automatic purge (only for ex-
perts)

xmit_table_max_compaction_time Number of milliseconds after which the matrix in the
retransmission table is compacted (only for experts)

xmit_table_msgs_per_row Number of elements of a row of the matrix in the re-
transmission table (only for experts). The capacity of
the matrix is xmit_table_num_rows *

List of Protocols

JBoss 106

Name Description

xmit_table_msgs_per_row

xmit_table_num_rows Number of rows of the matrix in the retransmission
table (only for experts)

xmit_table_resize_factor Resize factor of the matrix in the retransmission table
(only for experts)

7.6. Fragmentation

7.6.1. FRAG and FRAG2

Table 7.21. Properties

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

frag_size The max number of bytes in a message. Larger mes-
sages will be fragmented. Default is 8192 bytes

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_retained_buffer The max size in bytes for the byte array output buffer

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.7. Ordering

7.7.1. SEQUENCER

SEQUENCER provider total order for multicast (=group) messages by forwarding messages to the current coordin-
ator, which then sends the messages to the cluster on behalf of the original sender. Because it is always the same
sender (whose messages are delivered in FIFO order), a global (or total) order is established.

Sending members add every forwarded message M to a buffer and remove M when they receive it. Should the cur-

List of Protocols

JBoss 107

rent coordinator crash, all buffered messages are forwarded to the new coordinator.

Note that retransmissions go to the original sender, not to the coordinator.

Table 7.22. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.8. Group Membership

Group membership takes care of joining new members, handling leave requests by existing members, and handling
SUSPECT messages for crashed members, as emitted by failure detection protocols. The algorithm for joining a
new member is essentially:

- loop
- find initial members (discovery)
- if no responses:
- become singleton group and break out of the loop
- else:
- determine the coordinator (oldest member) from the responses
- send JOIN request to coordinator
- wait for JOIN response
- if JOIN response received:
- install view and break out of the loop
- else
- sleep for 5 seconds and continue the loop

7.8.1. pbcast.GMS

Table 7.23. Properties

Name Description

disable_initial_coord If true this member can never become coordinator.

List of Protocols

JBoss 108

Name Description

Default is false

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

flushInvokerClass

handle_concurrent_startup Temporary switch. Default is true and should not be
changed

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

join_timeout Join timeout

leave_timeout Leave timeout

level Sets the logger level (see javadocs)

log_collect_msgs Logs failures for collecting all view acks if true

max_bundling_time Max view bundling timeout if view bundling is
turned on. Default is 50 msec

merge_timeout Timeout to complete merge

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_prev_mbrs Max number of old members to keep in history. De-
fault is 50

print_local_addr Print local address of this member after connect. De-
fault is true

print_physical_addrs Print physical address(es) on startup

resume_task_timeout Timeout to resume ViewHandler. Default is 10000
msec

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

use_flush_if_present Use flush for view changes. Default is true

view_ack_collection_timeout Time in ms to wait for all VIEW acks (0 == wait
forever. Default is 2000 msec

view_bundling View bundling toggle

7.8.1.1. Disabling the initial coordinator

Consider the following situation: a new member wants to join a group. The prodedure to do so is:

List of Protocols

JBoss 109

• Multicast an (unreliable) discovery request (ping)

• Wait for n responses or m milliseconds (whichever is first)

• Every member responds with the address of the coordinator

• If the initial responses are > 0: determine the coordinator and start the JOIN protocolg

• If the initial response are 0: become coordinator, assuming that no one else is out there

However, the problem is that the initial mcast discovery request might get lost, e.g. when multiple members start at
the same time, the outgoing network buffer might overflow, and the mcast packet might get dropped. Nobody re-
ceives it and thus the sender will not receive any responses, resulting in an initial membership of 0. This could res-
ult in multiple coordinators, and multiple subgroups forming. How can we overcome this problem ? There are 3
solutions:

1. Increase the timeout, or number of responses received. This will only help if the reason of the empty member-
ship was a slow host. If the mcast packet was dropped, this solution won't help

2. Add the MERGE(2) protocol. This doesn't actually prevent multiple initial cordinators, but rectifies the prob-
lem by merging different subgroups back into one. Note that this involves state merging which needs to be
done by the application.

3. (new) Prevent members from becoming coordinator on initial startup. This solution is applicable when we
know which member is going to be the initial coordinator of a fresh group. We don't care about afterwards,
then coordinatorship can migrate to another member. In this case, we configure the member that is always
supposed to be started first with disable_initial_coord=false (the default) and all other members with dis-
able_initial_coord=true.This works as described below.

When the initial membership is received, and is null, and the property disable_initial_coord is true, then we just
continue in the loop and retry receving the initial membership (until it is non-null). If the property is false, we are
allowed to become coordinator, and will do so. Note that - if a member is started as first member of a group - but
its property is set to true, then it will loop until another member whose disable_initial_coord property is set to false,
is started.

7.9. Security

7.9.1. ENCRYPT

Table 7.24. Properties

Name Description

alias Alias used for recovering the key. Change the default

asymAlgorithm Cipher engine transformation for asymmetric al-
gorithm. Default is RSA

List of Protocols

JBoss 110

Name Description

asymInit Initial public/private key length. Default is 512

asymProvider Cryptographic Service Provider. Default is Bouncy
Castle Provider

encrypt_entire_message

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

keyPassword Password for recovering the key. Change the default

keyStoreName File on classpath that contains keystore repository

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

storePassword Password used to check the integrity/unlock the key-
store. Change the default

symAlgorithm Cipher engine transformation for symmetric al-
gorithm. Default is AES

symInit Initial key length for matching symmetric algorithm.
Default is 128

symProvider Cryptographic Service Provider. Default is Bouncy
Castle Provider

7.9.2. AUTH

7.10. State Transfer

7.10.1. pbcast.STATE_TRANSFER

7.10.2. pbcast.STREAMING_STATE_TRANSFER

7.10.2.1. Overview

List of Protocols

JBoss 111

In order to transfer application state to a joining member of a group pbcast.STATE_TRANSFER has to load entire
state into memory and send it to a joining member. Major limitation of this approach is that the state transfer that is
very large (>1Gb) would likely result in OutOfMemoryException. In order to alleviate this problem a new state
transfer methodology, based on a streaming state transfer, was introduced in JGroups 2.4

Streaming state transfer supports both partial and full state transfer.

Streaming state transfer provides an InputStream to a state reader and an OutputStream to a state writer. Output-
Stream and InputStream abstractions enable state transfer in byte chunks thus resulting in smaller memory require-
ments. For example, if application state consists a huge DOM tree, whose aggregate size is 2GB (and which has
partly been passivated to disk), then the state provider (ie. the coordinator) can simply iterate over the DOM tree
(activating the parts which have been passivated out to disk), and write to the OutputStream as it traverses the tree.
The state receiver will simply read from the InputStream and reconstruct the tree on its side, possibly again passiv-
ating parts to disk.

Rather than having to provide a 2GB byte[] buffer, streaming state transfer transfers the state in chunks of N bytes
where N is user configurable.

Prior to 2.6.9 and 2.8 releases streaming state transfer relied exclusively on its own tcp sockets to transfer state
between members. The downside of tcp socket approach is that it is not firewall friendly. If use_default_transport
property of pbcast.STREAMING_STATE_TRANSFER is set to true streaming state transfer will use normal mes-
sages to transfer state. This approach besides being completely transparent to application is also firewall friendly.
However, as expected, tcp sockets have better performance.

7.10.2.2. API

Streaming state transfer, just as regular byte based state transfer, can be used in both pull and push mode. Similarly
to the current getState and setState methods of org.jgroups.MessageListener, application interested in streaming
state transfer in a push mode would implement streaming getState method(s) by sending/writing state through a
provided OutputStream reference and setState method(s) by receiving/reading state through a provided Input-
Stream reference. In order to use streaming state transfer in a push mode, existing ExtendedMessageListener has
been expanded to include additional four methods:

public interface ExtendedMessageListener
{

/*non-streaming callback methods ommitted for clarity*/

/**
* Allows an application to write a state through a provided OutputStream.
* An application is obligated to always close the given OutputStream reference.
*
* @param ostream the OutputStream
* @see OutputStream#close()
*/
public void getState(OutputStream ostream);

/**
* Allows an application to write a partial state through a provided OutputStream.
* An application is obligated to always close the given OutputStream reference.
*
* @param state_id id of the partial state requested
* @param ostream the OutputStream

List of Protocols

JBoss 112

*
* @see OutputStream#close()
*/
public void getState(String state_id, OutputStream ostream);

/**
* Allows an application to read a state through a provided InputStream.
* An application is obligated to always close the given InputStream reference.
*
* @param istream the InputStream
* @see InputStream#close()
*/
public void setState(InputStream istream);

/**
* Allows an application to read a partial state through a provided InputStream.
* An application is obligated to always close the given InputStream reference.
*
* @param state_id id of the partial state requested
* @param istream the InputStream
*
* @see InputStream#close()
*/
public void setState(String state_id, InputStream istream);

}

For a pull mode (when application uses channel.receive() to fetch events) two new event classes will be introduced:

• StreamingGetStateEvent

• StreamingSetStateEvent

These two events/classes are very similar to existing GetStateEvent and SetStateEvent but introduce a new field;
StreamingGetStateEvent has an OutputStream and StreamingSetStateEvent has an InputStream.

The following code snippet demonstrates how to pull events from a channel, processing StreamingGetStateEvent
and sending hypothetical state through a provided OutputStream reference. Handling of StreamingSetStateEvent is
analogous to this example:

...
Object obj=channel.receive(0);
if(obj instanceof StreamingGetStateEvent) {
StreamingGetStateEvent evt=(StreamingGetStateEvent)obj;
OutputStream oos = null;
try {
oos = new ObjectOutputStream(evt.getArg());
oos.writeObject(state);
oos.flush();
} catch (Exception e) {}
finally{
try {
oos.close();
} catch (IOException e) {
System.err.println(e);
}
}
}
...

List of Protocols

JBoss 113

API that initiates state transfer on a JChannel level has the following methods:

public boolean getState(Address target,long timeout)throws
ChannelNotConnectedException,ChannelClosedException;
public boolean getState(Address target,String state_id,long timeout)throws
ChannelNotConnectedException,ChannelClosedException;

Introduction of STREAMING_STATE_TRANSFER does not change the current API.

7.10.2.3. Configuration

State transfer type choice is static, implicit and mutually exclusive. JChannel cannot use both STREAM-
ING_STATE_TRANSFER and STATE_TRANSFER in one JChannel configuration.

STREAMING_STATE_TRANSFER allows the following confguration parameters:

Table 7.25. Properties

Name Description

bind_addr The interface (NIC) used to accept state requests. The
following special values are also recognized: GLOB-
AL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

bind_interface_str The interface (NIC) which should be used by this
transport

bind_port The port listening for state requests. Default value of
0 binds to any (ephemeral) port

buffer_queue_size If default transport is used the total state buffer size
before state producer is blocked. Default is 81920
bytes

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_pool Maximum number of pool threads serving state re-
quests. Default is 5

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

pool_thread_keep_alive Keep alive for pool threads serving state requests. De-

List of Protocols

JBoss 114

Name Description

fault is 20000 msec

socket_buffer_size Buffer size for state transfer. Default is 8192 bytes

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

use_default_transport If true default transport is used for state transfer rather
than seperate TCP sockets. Default is false

7.10.2.4. Other considerations

Threading model used for state writing in a member providing state and state reading in a member receiving a state
is tunable. For state provider thread pool is used to spawn threads providing state. Thus member providing state, in
a push mode, will be able to concurrently serve N state requests where N is max_threads configuration parameter
of the thread pool. If there are no further state transfer requests pool threads will be automatically reaped after con-
figurable "pool_thread_keep_alive" timeout expires. For a channel operating in the push mode state reader channel
can read state by piggybacking on jgroups protocol stack thread or optionally use a separate thread. State reader
should use a separate thread if state reading is expensive (eg. large state, serialization) thus potentially affecting
liveness of jgroups protocol thread. Since most state transfers are very short (<2-3 sec) by default we do not use a
separate thread.

7.11. Flow control

Flow control takes care of adjusting the rate of a message sender to the rate of the slowest receiver over time. If a
sender continuously sends messages at a rate that is faster than the receiver(s), the receivers will either queue up
messages, or the messages will get discarded by the receiver(s), triggering costly retransmissions. In addition, there
is spurious traffic on the cluster, causing even more retransmissions.

Flow control throttles the sender so the receivers are not overrun with messages.

7.11.1. FC

FC uses a credit based system, where each sender has max_credits credits and decrements them whenever a mes-
sage is sent. The sender blocks when the credits fall below 0, and only resumes sending messages when it receives
a replenishment message from the receivers.

The receivers maintain a table of credits for all senders and decrement the given sender's credits as well, when a
message is received.

When a sender's credits drops below a threshold, the receiver will send a replenishment message to the sender. The
threshold is defined by min_bytes or min_threshold.

Table 7.26. Properties

List of Protocols

JBoss 115

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

ignore_synchronous_response Does not block a down message if it is a result of
handling an up message in thesame thread. Fixes
JGRP-928

level Sets the logger level (see javadocs)

max_block_time Max time (in milliseconds) to block. Default is 5000
msec

max_block_times Max times to block for the listed messages sizes
(Message.getLength()). Example:
"1000:10,5000:30,10000:500"

max_credits Max number of bytes to send per receiver until an ack
must be received to proceed. Default is 500000 bytes

min_credits Computed as max_credits x min_theshold unless ex-
plicitly set

min_threshold The threshold (as a percentage of max_credits) at
which a receiver sends more credits to a sender. Ex-
ample: if max_credits is 1'000'000, and
min_threshold 0.25, then we send ca. 250'000 credits
to P once we've received 250'000 bytes from P

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.11.2. SFC

A simplified version of FC. FC can actually still overrun receivers when the transport's latency is very small. SFC
is a simple flow control protocol for group (= multipoint) messages.

Every sender has max_credits bytes for sending multicast messages to the group.

Every multicast message (we don't consider unicast messages) decrements max_credits by its size. When
max_credits falls below 0, the sender asks all receivers for new credits and blocks until *all* credits have been re-
ceived from all members.

When the receiver receives a credit request, it checks whether it has received max_credits bytes from the requester
since the last credit request. If yes, it sends new credits to the requester and resets the max_credits for the requester.

List of Protocols

JBoss 116

Else, it takes a note of the credit request from P and - when max_credits bytes have finally been received from P - it
sends the credits to P and resets max_credits for P.

The maximum amount of memory for received messages is therefore <number of senders> * max_credits.

The relationship with STABLE is as follows: when a member Q is slow, it will prevent STABLE from collecting
messages above the ones seen by Q (everybody else has seen more messages). However, because Q will *not* send
credits back to the senders until it has processed all messages worth max_credits bytes, the senders will block. This
in turn allows STABLE to progress and eventually garbage collect most messages from all senders. Therefore, SFC
and STABLE complement each other, with SFC blocking senders so that STABLE can catch up.

SFC is currently experimental, we recommend to use MFC and UFC (see below) instead.

Table 7.27. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_block_time Max time (in milliseconds) to block. Default is 5000
msec

max_credits Max number of bytes to send per receiver until an ack
must be received to proceed. Default is 2000000
bytes

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.11.3. MFC and UFC

In 2.10, FC was separated into MFC (Multicast Flow Control) and Unicast Flow Control (UFC). The reason was
that multicast flow control should not be impeded by unicast flow control, and vice versa. Also, performance for
the separate implementations could be increased, plus they can be individually omitted. For example, if no unicast
flow control is needed, UFC can be left out of the stack configuration.

7.11.3.1. MFC

Table 7.28. Properties

List of Protocols

JBoss 117

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

ignore_synchronous_response Does not block a down message if it is a result of
handling an up message in thesame thread. Fixes
JGRP-928

level Sets the logger level (see javadocs)

max_block_time Max time (in milliseconds) to block. Default is 5000
msec

max_block_times Max times to block for the listed messages sizes
(Message.getLength()). Example:
"1000:10,5000:30,10000:500"

max_credits Max number of bytes to send per receiver until an ack
must be received to proceed

min_credits Computed as max_credits x min_theshold unless ex-
plicitly set

min_threshold The threshold (as a percentage of max_credits) at
which a receiver sends more credits to a sender. Ex-
ample: if max_credits is 1'000'000, and
min_threshold 0.25, then we send ca. 250'000 credits
to P once we've got only 250'000 credits left for P
(we've received 750'000 bytes from P)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.11.3.2. UFC

Table 7.29. Properties

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

ignore_synchronous_response Does not block a down message if it is a result of

List of Protocols

JBoss 118

Name Description

handling an up message in thesame thread. Fixes
JGRP-928

level Sets the logger level (see javadocs)

max_block_time Max time (in milliseconds) to block. Default is 5000
msec

max_block_times Max times to block for the listed messages sizes
(Message.getLength()). Example:
"1000:10,5000:30,10000:500"

max_credits Max number of bytes to send per receiver until an ack
must be received to proceed

min_credits Computed as max_credits x min_theshold unless ex-
plicitly set

min_threshold The threshold (as a percentage of max_credits) at
which a receiver sends more credits to a sender. Ex-
ample: if max_credits is 1'000'000, and
min_threshold 0.25, then we send ca. 250'000 credits
to P once we've got only 250'000 credits left for P
(we've received 750'000 bytes from P)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.12. Message stability

To serve potential retransmission requests, a member has to store received messages until it is known that every
member in the cluster has received them. Message stability for a given message M means that M has been seen by
everyone in the cluster.

The stability protocol periodically (or when a certain number of bytes have been received) initiates a consensus
protocol, which multicasts a stable message containing the highest message numbers for a given member. This is
called a digest.

When everyone has received everybody else's stable messages, a digest is computed which consists of the minim-
um sequence numbers of all received digests so far. This is the stability vector, and contain only message sequence
numbers that have been seen by everyone.

This stability vector is the broadcast to the group and everyone can remove messages from their retransmission
tables whose sequence numbers are smaller than the ones received in the stability vector. These messages can then
be garbage collected.

List of Protocols

JBoss 119

7.12.1. STABLE

Table 7.30. Properties

Name Description

cap Max percentage of the max heap (-Xmx) to be used
for max_bytes. Only used if ergonomics is enabled. 0
disables setting max_bytes dynamically.

desired_avg_gossip Average time to send a STABLE message. Default is
20000 msec

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_bytes Maximum number of bytes received in all messages
before sending a STABLE message is triggered .If er-
gonomics is enabled, this value is computed as
max(MAX_HEAP * cap, N * max_bytes) where N =
number of members

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stability_delay Delay before stability message is sent. Default is
6000 msec

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13. Misc

7.13.1. COMPRESS

Table 7.31. Properties

Name Description

compression_level Compression level 0-9 (0=no compression, 9=best
compression). Default is 9

ergonomics Enables ergonomics: dynamically find the best values

List of Protocols

JBoss 120

Name Description

for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

min_size Minimal payload size of a message (in bytes) for
compression to kick in. Default is 500 bytes

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

pool_size Number of inflaters/deflaters for concurrent pro-
cessing. Default is 2

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.2. pbcast.FLUSH

Flushing forces group members to send all their pending messages prior to a certain event. The process of flushing
acquiesces the cluster so that state transfer or a join can be done. It is also called the stop-the-world model as
nobody will be able to send messages while a flush is in process. Flush is used:

• State transfer

When a member requests state transfer it tells everyone to stop sending messages and waits for everyone's ack.
Then it asks the application for its state and ships it back to the requester. After the requester has received and
set the state successfully, the requester tells everyone to resume sending messages.

• View changes (e.g.a join). Before installing a new view V2, flushing would ensure that all messages *sent* in
the current view V1 are indeed *delivered* in V1, rather than in V2 (in all non-faulty members). This is essen-
tially Virtual Synchrony.

FLUSH is designed as another protocol positioned just below the channel, e.g. above STATE_TRANSFER and
FC. STATE_TRANSFER and GMS protocol request flush by sending a SUSPEND event up the stack, where it is
handled by the FLUSH protcol. The SUSPEND_OK ack sent back by the FLUSH protocol let's the caller know
that the flush has completed. When done (e.g. view was installed or state transferred), the protocol sends up a RE-
SUME event, which will allow everyone in the cluster to resume sending.

Channel can be notified that FLUSH phase has been started by turning channel block option on. By default it is
turned off. If channel blocking is turned on FLUSH notifies application layer that channel has been blocked by
sending EVENT.BLOCK event. Channel responds by sending EVENT.BLOCK_OK event down to FLUSH pro-
tocol. We recommend turning on channel block notification only if channel is used in push mode. In push mode ap-
plication that uses channel can perform block logic by implementing MembershipListener.block() callback method.

List of Protocols

JBoss 121

Table 7.32. Properties

Name Description

enable_reconciliation Reconciliation phase toggle. Default is true

end_flush_timeout Timeout to wait for UNBLOCK after STOP_FLUSH
is issued. Default is 2000 msec

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

retry_timeout Retry timeout after an unsuccessful attempt to quiet
the cluster (first flush phase). Default is 3000 msec

start_flush_timeout Timeout (per atttempt) to quiet the cluster during the
first flush phase. Default is 2000 msec

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

timeout Max time to keep channel blocked in flush. Default is
8000 msec

7.13.3. SCOPE

As discussed in Section 5.4.4, the SCOPE protocol is used to deliver updates to different scopes concurrently. It
has to be placed somewhere above UNICAST and NAKACK.

SCOPE has a separate thread pool. The reason why the default thread pool from the transport wasn't used is that the
default thread pool has a different purpose. For example, it can use a queue to which all incoming messages are ad-
ded, which would defy the purpose of concurrent delivery in SCOPE. As a matter of fact, using a queue would
most likely delay messages get sent up into SCOPE !

Also, the default pool's rejection policy might not be "run", so the SCOPE implementation would have to catch re-
jection exceptions and engage in a retry protocol, which is complex and wastes resources.

The configuration of the thread pool is shown below. If you expect concurrent messages to N different scopes, then
the max pool size would ideally be set to N. However, in most cases, this is not necessary as (a) the messages might
not be to different scopes or (b) not all N scopes might get messages at the same time. So even if the max pool size
is a bit smaller, the cost of this is slight delays, in the sense that a message for scope Y might wait until the thread
processing message for scope X is available.

List of Protocols

JBoss 122

To remove unused scopes, an expiry policy is provided: expiration_time is the number of milliseconds after which
an idle scope is removed. An idle scope is a scope which hasn't seen any messages for expiration_time milli-
seconds. The expiration_interval value defines the number of milliseconds at which the expiry task runs. Setting
both values to 0 disables expiration; it would then have to be done manually (see Section 5.4.4 for details).

Table 7.33. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

expiration_interval Interval in milliseconds at which the expiry task tries
to remove expired scopes

expiration_time Time in milliseconds after which an expired scope
will get removed. An expired scope is one to which
no messages have been added in
max_expiration_time milliseconds. 0 never expires
scopes

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

thread_naming_pattern Thread naming pattern for threads in this channel.
Default is cl

thread_pool.keep_alive_time Timeout in milliseconds to remove idle thread from
regular pool

thread_pool.max_threads Maximum thread pool size for the regular thread pool

thread_pool.min_threads Minimum thread pool size for the regular thread pool

7.13.4. RELAY

RELAY bridges traffic between seperate clusters, see Section 5.9 for details.

Table 7.34. Properties (experimental)

Name Description

bridge_name Name of the bridge cluster

List of Protocols

JBoss 123

[2] http://stomp.codehaus.org

Name Description

bridge_props Properties of the bridge cluster (e.g. tcp.xml)

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

present_global_views Drops views received from below and instead gener-
ates global views and passes them up. A global view
consists of the local view and the remote view,
ordered by view ID. If true, no protocolwhich re-
quires (local) views can sit on top of RELAY

relay If set to false, don't perform relaying. Used e.g. for
backup clusters; unidirectional replication from one
cluster to another, but not back. Can be changed at
runtime

site Description of the local cluster, e.g. "nyc". This is ad-
ded to every address, so itshould be short. This is a
mandatory property and must be set

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.5. STOMP

STOMP is a JGroups protocol which implements the STOMP [2] protocol. Currently (as of Nov 2010), transactions
and acks are not implemented.

The location of a STOMP protocol in a stack is shown in Figure 7.1.

List of Protocols

JBoss 124

http://stomp.codehaus.org

Figure 7.1. STOMP in a protocol stack

The STOMP protocol should be near the top of the stack.

A STOMP instance listens on a TCP socket for client connections. The port and bind address of the server socket
can be defined via properties.

A client can send SUBSCRIBE commands for various destinations. When a SEND for a given destination is re-
ceived, STOMP adds a header to the message and broadcasts it to all cluster nodes. Every node then in turn for-
wards the message to all of its connected clients which have subscribed to the same destination. When a destination
is not given, STOMP simply forwards the message to all connected clients.

Traffic can be generated by clients and by servers. In the latter case, we could for example have code executing in
the address space of a JGroups (server) node. In the former case, clients use the SEND command to send messages
to a JGroups server and receive messages via the MESSAGE command. If there is code on the server which gener-
ates messages, it is important that both client and server code agree on a marshalling format, e.g. JSON, so that
they understand each other's messages.

Clients can be written in any language, as long as they understand the STOMP protocol. Note that the JGroups
STOMP protocol implementation sends additional information (e.g. INFO) to clients; non-JGroups STOMP clients

List of Protocols

JBoss 125

should simply ignore them.

JGroups comes with a STOMP client (org.jgroups.client.StompConnection) and a demo (StompDraw). Both need
to be started with the address and port of a JGroups cluster node. Once they have been started, the JGroups STOMP
protocol will notify clients of cluster changes, which is needed so client can failover to another JGroups server
node when a node is shut down. E.g. when a client connects to C, after connection, it'll get a list of endpoints (e.g.
A,B,C,D). When C is terminated, or crashes, the client automatically reconnects to any of the remaining nodes, e.g.
A, B, or D. When this happens, a client is also re-subscribed to the destinations it registered for.

The JGroups STOMP protocol can be used when we have clients, which are either not in the same network seg-
ment as the JGroups server nodes, or which don't want to become full-blown JGroups server nodes. Figure 7.2
shows a typical setup.

Figure 7.2. STOMP architecture

List of Protocols

JBoss 126

There are 4 nodes in a cluster. Say the cluster is in a LAN, and communication is via IP multicasting (UDP as
transport). We now have clients which do not want to be part of the cluster themselves, e.g. because they're in a dif-
ferent geographic location (and we don't want to switch the main cluster to TCP), or because clients are frequently
started and stopped, and therefore the cost of startup and joining wouldn't be amortized over the lifetime of a client.
Another reason could be that clients are written in a different language, or perhaps, we don't want a large cluster,
which could be the case if we for example have 10 JGroups server nodes and 1000 clients connected to them.

In the example, we see 9 clients connected to every JGroups cluster node. If a client connected to node A sends a
message to destination /topics/chat, then the message is multicast from node A to all other nodes (B, C and D).
Every node then forwards the message to those clients which have previously subscribed to /topics/chat.

When node A crashes (or leaves) the JGroups STOMP clients (org.jgroups.client.StompConnection) simply pick
another server node and connect to it.

The properties for STOMP are shown below:

Table 7.35. Properties (experimental)

Name Description

bind_addr The bind address which should be used by the server
socket. The following special values are also recog-
nized: GLOBAL, SITE_LOCAL, LINK_LOCAL and
NON_LOOPBACK

endpoint_addr If set, then endpoint will be set to this address

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

exact_destination_match If set to false, then a destination of /a/b match /a/b/c,
a/b/d, a/b/c/d etc

forward_non_client_generated_msgs Forward received messages which don't have a
StompHeader to clients

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

port Port on which the STOMP protocol listens for re-
quests

send_info If true, information such as a list of endpoints, or
views, will be sent to all clients (via the INFO com-
mand). This allows for example intelligent clients to
connect to a different server should a connection be

List of Protocols

JBoss 127

Name Description

closed.

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.6. DAISYCHAIN

The DAISYCHAIN protocol is discussed in Section 5.10.

Table 7.36. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

forward_queue_size The number of messages in the forward queue. This
queue is used to host messages that need to be for-
warded by us on behalf of our neighbor

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

loopback Loop back multicast messages

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

send_queue_size The number of messages in the send queue. This
queue is used to host messages that need to be sent

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.7. RATE_LIMITER

RATE_LIMITER can be used to set a limit on the data sent per time unit. When sending data, only max_bytes can
be sent per time_period milliseconds. E.g. if max_bytes="50M" and time_period="1000", then a sender can only
send 50MBytes / sec max.

Table 7.37. Properties (experimental)

Name Description

ergonomics Enables ergonomics: dynamically find the best values

List of Protocols

JBoss 128

Name Description

for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

max_bytes Max number of bytes to be sent in time_period ms.
Blocks the sender if exceeded until a new time period
has started

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

time_period Number of milliseconds during which max_bytes
bytes can be sent

7.13.8. Locking protocols

There are currently 2 locking protocols: org.jgroups.protocols.CENTRAL_LOCK and
org.jgroups.protocols.PEER_LOCK.

7.13.8.1. CENTRAL_LOCK

CENTRAL_LOCK has the current coordinator of a cluster grants locks, so every node has to communicate with
the coordinator to acquire or release a lock. Lock requests by different nodes for the same lock are processed in the
order in which they are received.

A coordinator maintains a lock table. To prevent losing the knowledge of who holds which locks, the coordinator
can push lock information to a number of backups defined by num_backups. If num_backups is 0, no replication of
lock information happens. If num_backups is greater than 0, then the coordinator pushes information about ac-
quired and released locks to all backup nodes. Topology changes might create new backup nodes, and lock inform-
ation is pushed to those on becoming a new backup node.

The advantage of CENTRAL_LOCK is that all lock requests are granted in the same order across the cluster,
which is not the case with PEER_LOCK.

Table 7.38. Properties (experimental)

Name Description

bypass_bundling bypasses message bundling if set

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

List of Protocols

JBoss 129

Name Description

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_backups Number of backups to the coordinator. Server locks
get replicated to these nodes as well

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.8.2. PEER_LOCK

PEER_LOCK acquires a lock by contacting all cluster nodes, and lock acquisition is only successful if all non-
faulty cluster nodes (peers) grant it.

Unless a total order configuration is used (e.g. org.jgroups.protocols.SEQUENCER based), lock requests for the
same resource from different senders may be received in different order, so deadlocks can occur. Example:

• Nodes A and B

• A and B call lock(X) at the same time

• A receives L(X,A) followed by L(X,B): locks X(A), queues L(X,B)

• B receives L(X,B) followed by L(X,A): locks X(B), queues L(X,A)

To acquire a lock, we need lock grants from both A and B, but this will never happen here. To fix this, either add
SEQUENCER to the configuration, so that all lock requests are received in the same global order at both A and B,
or use java.util.concurrent.locks.Lock.tryLock(long,javaTimeUnit) with retries if a lock cannot be acquired.

Table 7.39. Properties (experimental)

Name Description

bypass_bundling bypasses message bundling if set

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack

List of Protocols

JBoss 130

Name Description

(also change ID)

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

7.13.9. CENTRAL_EXECUTOR

CENTRAL_EXECUTOR is an implementation of Executing which is needed by the ExecutionService.

Table 7.40. Properties (experimental)

Name Description

bypass_bundling bypasses message bundling if set

ergonomics Enables ergonomics: dynamically find the best values
for properties at runtime

id Give the protocol a different ID if needed so we can
have multiple instances of it in the same stack

level Sets the logger level (see javadocs)

name Give the protocol a different name if needed so we
can have multiple instances of it in the same stack
(also change ID)

num_backups Number of backups to the coordinator. Queue State
gets replicated to these nodes as well

stats Determines whether to collect statistics (and expose
them via JMX). Default is true

List of Protocols

JBoss 131

Bibliography
[Ensemble:1997] The Ensemble Distributed Communication System , CS Dept Cornell University , 1997 . ht-

tp://www.cs.cornell.edu/Info/Projects/Ensemble/index.html .

[Gamma:1995] Erich Gamma , Richard Helm , Ralph Johnson , and John Vlissides . Design Patterns: Elements of
Reusable Object-Oriented Software . Addison-Wesley , 1995 .

JBoss 132

http://www.cs.cornell.edu/Info/Projects/Ensemble/index.html
http://www.cs.cornell.edu/Info/Projects/Ensemble/index.html

	Reliable Multicasting with the JGroups Toolkit
	Table of Contents
	Foreword
	Acknowledgments
	Chapter 1. Overview
	1.1. Channel
	1.2. Building Blocks
	1.3. The Protocol Stack
	1.4. Header
	1.5. Event

	Chapter 2. Installation and Configuration
	2.1. Requirements
	2.2. Installing the binary distribution
	2.3. Installing the source distribution
	2.4. Building JGroups (source distribution only)
	2.5. Testing your Setup
	2.6. Running a Demo Program
	2.7. Using IP Multicasting without a network connection
	2.8. It doesn't work !
	2.9. The instances still don't find each other !
	2.10. Problems with IPv6
	2.11. Wiki
	2.12. I have discovered a bug !
	2.13. Supported classes
	2.13.1. Experimental
	2.13.2. Unsupported

	Chapter 3. API
	3.1. Utility classes
	3.1.1. objectToByteBuffer(), objectFromByteBuffer()

	3.2. Interfaces
	3.2.1. MessageListener
	3.2.2. ExtendedMessageListener
	3.2.3. MembershipListener
	3.2.4. ExtendedMembershipListener
	3.2.5. ChannelListener
	3.2.6. Receiver
	3.2.7. ExtendedReceiver
	3.2.8. ReceiverAdapter and ExtendedReceiverAdapter

	3.3. Address
	3.4. Message
	3.5. View
	3.5.1. ViewId
	3.5.2. MergeView

	3.6. JChannel
	3.6.1. Creating a channel
	3.6.1.1. Programmatic creation

	3.6.2. Setting options
	3.6.3. Giving the channel a logical name
	3.6.4. Generating custom addresses
	3.6.5. Connecting to a channel
	3.6.6. Connecting to a channel and getting the state in one operation
	3.6.7. Getting the local address and the group name
	3.6.8. Getting the current view
	3.6.9. Sending a message
	3.6.10. Receiving a message
	3.6.11. Using a Receiver to receive messages
	3.6.12. Peeking at a message
	3.6.13. Getting the group's state
	3.6.14. Getting the state with a Receiver
	3.6.15. Partial state transfer
	3.6.16. Streaming state transfer
	3.6.17. Disconnecting from a channel
	3.6.18. Closing a channel

	Chapter 4. Building Blocks
	4.1. PullPushAdapter
	4.1.1. Example

	4.2. MessageDispatcher
	4.2.1. Example

	4.3. RpcDispatcher
	4.3.1. Example
	4.3.1.1. RequestOptions
	4.3.1.2. Asynchronous calls with futures

	4.4. ReplicatedHashMap
	4.5. NotificationBus
	4.6. Distributed locking
	4.6.1. Locking and merges

	4.7. Distributed ExecutionService

	Chapter 5. Advanced Concepts
	5.1. Using multiple channels
	5.2. The shared transport: sharing a transport between multiple channels in a JVM
	5.3. Transport protocols
	5.3.1. UDP
	5.3.1.1. Using UDP and plain IP multicasting
	5.3.1.2. Using UDP without IP multicasting

	5.3.2. TCP
	5.3.2.1. Using TCP and TCPPING
	5.3.2.2. Using TCP and TCPGOSSIP

	5.3.3. TUNNEL
	5.3.3.1. Using TUNNEL to tunnel a firewall

	5.4. The concurrent stack
	5.4.1. Overview
	5.4.1.1. Configuration

	5.4.2. Elimination of up and down threads
	5.4.3. Concurrent message delivery
	5.4.4. Scopes: concurrent message delivery for messages from the same sender
	5.4.5. Out-of-band messages
	5.4.6. Replacing the default and OOB thread pools
	5.4.7. Sharing of thread pools between channels in the same JVM

	5.5. Misc
	5.5.1. Shunning
	5.5.2. Using a custom socket factory

	5.6. Handling network partitions
	5.6.1. Merging substates
	5.6.2. The primary partition approach
	5.6.3. The Split Brain syndrome and primary partitions

	5.7. Flushing: making sure every node in the cluster received a message
	5.8. Large clusters
	5.8.1. Reducing chattiness
	5.8.1.1. Discovery
	5.8.1.2. Failure detection protocols
	5.8.1.2.1. FD_SOCK
	5.8.1.2.2. FD_ALL

	5.9. Bridging between remote clusters
	5.9.1. Views
	5.9.2. Configuration

	5.10. Daisychaining
	5.10.1. Traditional N-1 approach
	5.10.2. Daisychaining approach
	5.10.3. Switch usage
	5.10.4. Performance
	5.10.5. Configuration

	5.11. Ergonomics

	Chapter 6. Writing protocols
	6.1. Anatomy of a protocol
	6.2. Writing user defined headers

	Chapter 7. List of Protocols
	7.1. Transport
	7.1.1. UDP
	7.1.2. TCP
	7.1.3. TUNNEL

	7.2. Initial membership discovery
	7.2.1. PING
	7.2.2. FILE_PING
	7.2.3. JDBC_PING
	7.2.4. TCPPING
	7.2.5. TCPGOSSIP
	7.2.6. MPING
	7.2.7. BPING
	7.2.8. S3_PING

	7.3. Merging after a network partition
	7.3.1. MERGE2

	7.4. Failure Detection
	7.4.1. FD
	7.4.2. FD_ALL
	7.4.3. FD_SIMPLE
	7.4.4. FD_PING
	7.4.5. FD_ICMP
	7.4.6. FD_SOCK
	7.4.7. VERIFY_SUSPECT

	7.5. Reliable message transmission
	7.5.1. pbcast.NAKACK
	7.5.2. UNICAST
	7.5.3. UNICAST2

	7.6. Fragmentation
	7.6.1. FRAG and FRAG2

	7.7. Ordering
	7.7.1. SEQUENCER

	7.8. Group Membership
	7.8.1. pbcast.GMS
	7.8.1.1. Disabling the initial coordinator

	7.9. Security
	7.9.1. ENCRYPT
	7.9.2. AUTH

	7.10. State Transfer
	7.10.1. pbcast.STATE_TRANSFER
	7.10.2. pbcast.STREAMING_STATE_TRANSFER
	7.10.2.1. Overview
	7.10.2.2. API
	7.10.2.3. Configuration
	7.10.2.4. Other considerations

	7.11. Flow control
	7.11.1. FC
	7.11.2. SFC
	7.11.3. MFC and UFC
	7.11.3.1. MFC
	7.11.3.2. UFC

	7.12. Message stability
	7.12.1. STABLE

	7.13. Misc
	7.13.1. COMPRESS
	7.13.2. pbcast.FLUSH
	7.13.3. SCOPE
	7.13.4. RELAY
	7.13.5. STOMP
	7.13.6. DAISYCHAIN
	7.13.7. RATE_LIMITER
	7.13.8. Locking protocols
	7.13.8.1. CENTRAL_LOCK
	7.13.8.2. PEER_LOCK

	7.13.9. CENTRAL_EXECUTOR

	Bibliography

