
Version 2.1

User Manual

February 4, 2013

Contents

1. Introduction 1

2. Requirements 3
2.1. System Requirements . 3
2.2. Database . 3
2.3. Java Virtual Machine . 3

3. Installation 5
3.1. Installing Scaffold Hunter . 5
3.2. Installing Plugins . 5
3.3. Starting Scaffold Hunter . 5

4. Start Dialog 7
4.1. Setting up a Database Connection . 7
4.2. User Management . 8

5. Getting Started 9
5.1. Session Management . 9
5.2. Dataset Management . 10

5.2.1. Importing Data . 11
5.2.2. Calculation of Properties . 18
5.2.3. Scaffold Tree Generation . 20

5.3. Filtering . 24

6. Main Window 25
6.1. Structure of the Main Window . 25
6.2. Subset Management . 26

6.2.1. The Subset Tree . 26
6.2.2. Creating Subsets from the Selection . 26
6.2.3. Deleting Subsets . 27
6.2.4. Set Operations . 27
6.2.5. Filtering . 27

6.3. Managing and Arranging Views . 28
6.3.1. Opening and Closing Views . 28
6.3.2. Split Windows . 28
6.3.3. Multiple Main Windows . 28
6.3.4. Moving Views . 28
6.3.5. Renaming Views . 29

6.4. Interaction between Views . 29
6.4.1. Selection . 29
6.4.2. Flags . 29

6.5. Tooltip Window and Comments . 30
6.5.1. Configuring the Tooltip . 30
6.5.2. Configuring the Properties . 31
6.5.3. Comments . 31

6.6. Settings . 32

i

Contents Contents

7. Views 35
7.1. Scaffold Tree . 35

7.1.1. Navigation . 35
7.1.2. Context Menu . 36
7.1.3. Tree Menu & Toolbar . 36
7.1.4. Layout . 37
7.1.5. Sorting . 38
7.1.6. Property Mappings . 38
7.1.7. Exporting Images . 39

7.2. Table . 41
7.2.1. Sorting and Ordering the Table . 41
7.2.2. Resizing Table Cells . 41
7.2.3. The Minimap . 42
7.2.4. Sticky Columns . 42
7.2.5. Setting Flags . 42
7.2.6. Selecting Molecules . 43
7.2.7. Writing and Editing Comments . 43
7.2.8. Placeholders in Table Cells . 43

7.3. Dendrogram . 43
7.3.1. The View in Detail . 43
7.3.2. Sidebar . 44
7.3.3. Tree Frame . 45
7.3.4. Toolbar . 45
7.3.5. Table . 46
7.3.6. Clustering Configuration Panel . 46

7.4. Plot . 47
7.4.1. Choosing the Data to be Displayed . 47
7.4.2. Dot Color and Size . 48
7.4.3. Hyperplanes . 48
7.4.4. Zooming, Scrolling and Rotating the Diagram . 49
7.4.5. Highlighting, Selecting and Picking . 50
7.4.6. Hiding the Axis Ticks and Grids . 50

8. Export 51

Bibliography 53

A. Keyboard Shortcuts 55

B. How to Write Plugins 57
B.1. Import Plugins . 57

B.1.1. What is needed to write a new import plugin . 57
B.1.2. Basic parts of a plugin . 57
B.1.3. Writing a simple plugin . 57
B.1.4. First Version - An empty configuration panel . 58
B.1.5. Second Version - We give a simple result . 58
B.1.6. Third Version - Settings panel . 59
B.1.7. Fourth and last version - Output a message during the import 60

B.2. Calculation Plugins . 61
B.2.1. What is needed to write a new calculation plugin 61
B.2.2. Basic parts of a plugin . 62
B.2.3. Writing a simple plugin . 62
B.2.4. First version - Create a plugin that does nothing 62
B.2.5. Second version - ’Calculate’ a new property . 63
B.2.6. Third version - Make the plugin configurable . 64

ii

Contents Contents

B.2.7. Fourth version - Use existing properties for calculation 65
B.2.8. Fifth and last version - Display a message during calculation 66
B.2.9. Use transform options to handle frequent tasks . 67

C. FAQ - Frequently Asked Questions 69
C.1. How can I prevent other users from getting access to my data? 69
C.2. The tooltip window annoys me! . 69
C.3. I cannot use all clustering options – there are no properties available for some distance

measures! . 69
C.4. I have lost my password, how can I access my data? . 69

iii

1. Introduction

Searching chemical space for a particular compound is like looking for a needle in a haystack. To
assist you with this task, the software Scaffold Hunter was developed. Scaffold Hunter uses the concept
of scaffolds, i.e., underlying molecular frameworks that serve as simplified representatives for classes
of similar molecules. These scaffolds can be organized in a tree-like hierarchy based on the inclusion
relation, enabling the user to navigate in the associated chemical space in an intuitive way. Furthermore,
Scaffold Hunter supports a variety of views allowing the user to inspect chemical compound data from
different perspectives.

The first step in using Scaffold Hunter is to aggregate data in a database, and create a so-called scaffold
tree for this data. These topics are covered in the first part of the manual. Once this is done the data
can be navigated, filtered, viewed and annotated by multiple users. This is described in the second part
of the manual.

History. The Scaffold Hunter project was initiated by Stefan Wetzel and Karsten Klein and a first
version of Scaffold Hunter was implemented by the project group 504 [2] at the TU Dortmund in 2009.
For version 2.x, many parts of it were improved, extended and rewritten by the project group 552 [1],
resulting in a program with many additional features, better support of chemical workflows, and improved
usability. Currently, the project is managed by Nils Kriege and Karsten Klein at TU Dortmund, and
continuously improved in a cooperation of TU Dortmund and the Max-Planck-Institute for Molecular
Physiology.

1

2. Requirements

2.1. System Requirements

CPU
A CPU with at least 2 GHz is recommended to run the program.

RAM
At least 1 GB must be available to the Java Virtual Machine running the program.
4 GB are recommended for full functionality.

Hard Drive
40 MB of free space are sufficient to store the program and the database connections.

Display
A display with a resolution of at least 1024x768 is recommended.

2.2. Database

An SQL database is required to store the imported datasets and the user’s sessions. The currently
supported databases systems are:

MySQL
Version 5.0 or later is required. A copy of MySQL can be obtained at http://www.mysql.com.

HSQLDB
Version 2.2.4 of HSQLDB is included and can be used for small personal databases. Additional space
on the hard drive is required if this type of database is used. Please note that using HSQLDB leads
to an increased memory requirement compared to MySQL.

2.3. Java Virtual Machine

A virtual machine capable of running Java SE 6 code is required to execute the program. Such a virtual
machine can be obtained at http://www.java.com.

3

http://www.mysql.com
http://www.java.com

3. Installation

3.1. Installing Scaffold Hunter

Scaffold Hunter is written completely in Java and deployed in a runnable JAR file. Therefore no
installation is required to run the application. Simply download the Scaffold Hunter ZIP archive
from the website and extract it somewhere on your computer (e.g., in case you have admin rights,
C:\Program Files\ScaffoldHunter on Windows or /opt/scaffoldhunter on Unix/Linux/Mac, or
alternatively in any local directory).

Important: A Java Virtual Machine must be installed on your computer.
For large datasets and better overall performance, the installation of a MySQL

Database is recommended. See Sec. 2.3: Java Virtual Machine for further
information.

3.2. Installing Plugins

If you need to install additional plugins that are not bundled with Scaffold Hunter, you have to copy the
plugin’s JAR file to the plugins subdirectory of the Scaffold Hunter installation directory.

3.3. Starting Scaffold Hunter

To launch Scaffold Hunter, simply run the supplied start-script (run.cmd on Windows or run.sh on
Unix/Linux/Mac). If you want to work with large datasets, you may want to increase the maximum
memory available for your application. Be sure your computer has enough physical memory available.
Increasing the usable memory can have a huge impact on Scaffold Hunter’s performance, too.

The default start-script specifies a maximum of 1 GiB of memory. To increase the available memory, edit
the start-script with a text editor, find the line displayed below and change 1024m to whatever amount
of memory you would like to be available to Scaffold Hunter. If you want to specify the amount in GiB
you can write, e.g., 1g.

run.cmd (Windows): set memory=1024m

run.sh (Linux/Unix/Mac): memory=1024m

Warning: If you experience a java.lang.OutOfMemoryException: Java heap
space error, try to increase the memory as described above.

5

4. Start Dialog

Figure 4.1.: Start Dialog

The Start Dialog shown in Fig. 4.1 is the first window that appears at program startup. Here you can
select the database to work with and enter your username and password. If the checkbox “Save password”
is selected, the password will be saved in encrypted form. With the checkbox “Open last used session”
you can choose to automatically open the session most recently used under the given username.

4.1. Setting up a Database Connection

You can select the database to work with using the drop-down box in the Start Dialog. To add a new
database to this list, click on the “Databases” button. This opens the Databases Dialog shown in Fig.
4.2. On the left hand side of the window, the existing database connections are shown. With the plus
and minus buttons you can create a new connection or remove an existing one. On the right hand side
the settings for the selected database are shown.

The name is only used for identification of the database connection – you can enter any name in this
field.

“Database Type” is used to define the database system. At the moment Scaffold Hunter supports two
different types of databases: HSQLDB and MySQL.

A HSQLDB database is an internal and local database. As it is easy to configure, this database is best if
you want to test Scaffold Hunter or to have a small private database. If you choose a HSQLDB database,
the only setting left is the database path, where you can specify a location to store the database.

MySQL is a server-based database. It requires a MySQL server that may be running on the same machine as
Scaffold Hunter, or on a different machine. To configure a MySQL connection, there are a few settings to

7

4.2. USER MANAGEMENT CHAPTER 4. START DIALOG

Figure 4.2.: Databases Dialog

be made. The “URL” field holds the server name or IP address. For example, “localhost” or “127.0.0.1”
both would point to the local machine. The protocol name “jdbc:mysql://” is not necessary and will be
added automatically. In the “Database” field the database or schema name is entered. On a server, only
one schema with a given name can exist. So, if an existing schema name is entered, this schema will be
used (or overwritten if the schema was used by a different application or a different version of Scaffold
Hunter). The “DB Username” is used to log in to the database. This user must be configured on the
MySQL server and needs all rights to manipulate data in the database. It also needs all data definition
rights if the database was not initialized before by Scaffold Hunter or has to be recreated. The connection
to the database also requires a password, which can be saved in the configuration file. Please note that
password is stored unencrypted. If this password is not saved, you will be asked to enter the password
each time you log in to the database.

4.2. User Management

Figure 4.3.: User Creation Dialog

Scaffold Hunter includes its own user management. A profile is used to save personal settings and open
sessions (see Sec. 5.1: Session Management). To create a new user, click on the button “Create User”.
Thereby the User Creation Dialog shown in Fig. 4.3 is opened, where you can choose the database on which
to create the user, as well as a username and password. After clicking “Ok” the program will connect
to the selected database and create a new user with the specified username. If the specified username
already exists in the database user creation will fail and an error message will be displayed.

8

5. Getting Started

5.1. Session Management

In Scaffold Hunter, a session represents a complete working space of a user. It references a dataset
consisting of molecules and a corresponding scaffold tree. The molecules of a session can be filtered to
reduce the molecule count to a manageable size.

Figure 5.1.: Session Management Dialog

The Session Management Dialog shown in Fig. 5.1 appears after logging in, or by selecting “Session
→ Load / Create” from the menu. If “Open last used session” was selected in the Start Dialog, the
session management window does not appear and the last used session is opened instead. The session
management consists of two areas. The upper area is used for creating new sessions. The lower area
shows a list of available sessions and options for them. At the first start the session list will be empty,
and a new session has to be created in order to start Scaffold Hunter.

To create a new session, choose a title, the dataset to create the session on, and the scaffold tree. The
title can be changed later. After clicking on the “Create” button, a filter dialog will appear, allowing to
filter the selected dataset. The created session will then be displayed in the list of sessions in the lower
area. To create a new dataset or to add a new tree to a dataset, click “Manage Datasets”.

In the lower area of the session management window, the available sessions are shown with their title,
dataset, tree and molecule count. Here the sessions can be renamed or removed, if they are no longer
needed. To open a session, select the desired session and click the “Open” button. Initially the last used
session is selected in the list.

9

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

5.2. Dataset Management

Figure 5.2.: Dataset Management Dialog

The Dataset Management Dialog shown in Fig. 5.2 gives you the possibility to import, modify or delete
the molecular data stored in Scaffold Hunter’s internal database. In Scaffold Hunter you can manage
your projects by the use of datasets. Each dataset consists of a set of molecules and a collection of
properties for these molecules. For each dataset you can generate an arbitrary number of scaffold trees
using different generation rules. You will later use the scaffold tree of your choice, to navigate through
the molecules in the dataset. In the following the actions you can execute on datasets and trees are
explained.

Actions on datasets

New dataset To create a new dataset by importing chemical compound data, click on “New Dataset”
which opens the import wizard. Read Sec. 5.2.1: Importing Data to get more information about the
import process.

Add properties If you have an existing dataset and want to add some additional molecular properties
(e.g. bioactivity information from a bio assay), select the dataset from the list of datasets and click
“Add Properties”. A wizard similar to the import wizard described in Sec. 5.2.1: Importing Data will
appear.

Important: Please note that you can only add additional properties to exist-
ing molecules. For technical reasons it is not possible to add completely new
molecules. If you try to do so, those molecules will simply be ignored.

10

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

Calculate properties Scaffold Hunter gives you the opportunity to calculate additional properties (e.g.
properties derived from the structure of a compound) for the molecules of a dataset. Additionally, to
enable some features like clustering molecules based on structural similarity, you may need to calculate
fingerprint properties. To calculate properties for a dataset, select the dataset from the list of datasets
and click “Calculate Properties”. A dialog to create calculation tasks appears. Please read Sec. 5.2.2:
Calculation of Properties to learn more about the calculation process.

Rename dataset If you created a dataset and would like to change its name or description, select the
dataset from the list of datasets and click “Rename Dataset”. A rename dialog will appear.

Delete dataset If there is an existing dataset you don’t need anymore, select it from the list of datasets
and click “Delete Dataset”. A confirmation dialog will appear. If you confirm the deletion, the dataset
and all trees in it will be deleted.

Warning: Scaffold Hunter can be used by multiple users. If you are working
on a database shared with other users, you will also destroy any work done
by other users on the dataset being deleted and the corresponding trees. First
ensure nobody needs the dataset and the corresponding trees anymore.

Actions on trees

New tree To create a new tree, select the dataset the tree should be generated for from the list of
datasets and click “New Tree”. The tree generation dialog will appear. Read Sec. 5.2.3: Scaffold Tree
Generation to learn more about how the tree generation process works.

Rename tree If you created a tree and would like to change its name or description, select the tree
from the list of trees and click “Rename Tree”. A rename dialog will appear.

Delete tree If there is an existing tree you don’t need anymore, select it from the list of trees on the
left and click “Delete Tree”. A confirmation dialog will appear. If you confirm the deletion, the tree will
be deleted.

Warning: Scaffold Hunter can be used by multiple users. If you are working
on a database shared with other users, you will also destroy any work done
by other users on the tree being deleted. First ensure nobody needs the tree
anymore.

5.2.1. Importing Data

Using different import plugins, Scaffold Hunter can import data from different sources. Currently there
are plugins to import data from CSV files, SDF files and MySQL databases bundled with the program
for a more detailed description of the plugins see Sec. 5.2.1.2: Import Plugins. To perform an import
you have to create one or more import jobs, one for each data source you want to import. These jobs
will run sequentially and the data imported by those jobs will be merged according to rules which can
be selected during the import process. In general Scaffold Hunter considers two structures equal if they
have the same canonical SMILES string. If a structure is present in more than one source and properties
from these sources are mapped to the same internal property the property entries for the structure will
be merged. The following merge strategies are available to influence which data will be found in the
finished dataset:

11

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

Do not overwrite: The first seen occurrence of the property is used and will not be overwritten by the
current job.

Do overwrite: The property will be overwritten by the current import job.

Concatenate (only for textual properties): The property values will be appended at the end of the
existing value.

Minimum / maximum (only for numeric properties): The minimum or maximum of the available
property values will be retained.

5.2.1.1. Creating Import Jobs

Figure 5.3.: Create Import Jobs dialog

When you click on “New Dataset” the Create Import Jobs dialog as shown in Fig. 5.3 will open. In the
top section of the dialog a name and a more detailed description for the new dataset can be entered. On
the left hand side you have two lists. First the list of “Import Plugins”, where you can select a plugin
appropriate for the data source you want to import. Underneath there is the list of “Import Jobs”,
which contains all import jobs created so far. The buttons beside this list can be used to delete import
jobs and to change their order. During import the jobs will be executed one after the other from top
to bottom. On the right hand side there are the settings for the currently selected plugin. Beneath the
settings you can enter an optional name for the import job. A click on the button beside the name field
will create a new import job with the selected settings. Below this you can find a button to start the
import process.

12

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

5.2.1.2. Import Plugins

Figure 5.4.: CSV Import Plugin

CSV Import Plugin With the CSV plugin you can import data from comma separated value (CSV)
files. In Fig. 5.4 you can see the configuration panel of the CSV plugin. You can select a CSV file,
different cell separators and quotation characters. Next to some default values you can type in any other
character. One of these options allows you to check the “quotation required” box to configure the plugin
to read only quoted content. With the “First row contains names” switch you can configure the plugin
to use the first row in the CSV file for the names of the columns. If you deselect this switch the columns
will be numbered. Finally there is a “Preview with current settings” button. When you click on this
button the first 10 rows of the CSV file will be read according to your settings and displayed in the table
below. An example can be seen in Fig. 5.5.

Figure 5.5.: CSV Import Plugin with preview

SQL Import Plugin The SQL import plugin allows to integrate data from SQL-based databases. The
configuration panel, as seen in Fig. 5.6 provides various configuration options explained in the follow-
ing.

DB Type This field allows to select the type of the SQL database you want to connect to. Currently
only MySQL is tested. Every JDBC compatible database should be useable.

13

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

Figure 5.6.: SQL Import Plugin

Figure 5.7.: SQL Import Plugin after “Get tables from database”

DB Host In “DB Host” you can select the database host, the server on which the source database is
running. If you need a specific port to connect to the string is: HOSTNAME:PORT

DB schema In the “DB schema” field you can enter the database (schema) name you want to use.

DB User / DB Password In the “DB User” and “DB Password” fields you can fill in your database
connection credentials. Only read access is needed.

Get tables from database Once you have entered the connection data you can click the “Get tables
from database” button. The plugin will connect to the database and put all table names found in the
schema in the “DB Table” list. A connection done with the ChEBI database is shown in Fig. 5.7.

DB Table The “DB Table” list contains the tables found after clicking on “Get tables from database”.
When selecting a table a simple SELECT statement will be generated.

SQL Statement In the “SQL Statement” field you can type in an SQL SELECT statement that will
be run on the selected database. The resulting rows from this statement will be used as source for the
import.

14

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

Figure 5.8.: SQL Import Plugin after “Execute SQL Query”

Execute SQL Query By clicking on “Execute SQL Query” your SQL Statement will be executed and
the “SMILES” and “MOL” lists will be filled with the resulting column names. This is shown in Fig.
5.8.

SMILES / MOL In the “SMILES” and “MOL” lists you can select the column names which contain
structure information in SMILES and/or MOL format.

SDF Import Plugin The SDF Import plugin is very easy to use. It just has a field “SDF file name”
where you enter the path to the SDF file which you want to import.

5.2.1.3. Map Imported Properties Dialog

Once you have created at least one import job, you can start the import process by clicking on “Start
Import”. A new Dialog named “Map Imported Properties” will appear. In Fig. 5.9 you can see an
example of this dialog with two import jobs. For every import Job there are the same GUI elements. At
the top you have a line with the name of the following import job.

Structure name property In the “Structure name property” list you select one of the properties for
the name field of the structures. The name field will be used at several places in the program to present
a name together with a structure, however it is not used internally so there are no special requirements
for this property. If the name property is missing for some structure, the SMILES string will be used
instead.

Name/Molecular structure merge strategy In the “Name merge strategy” and “Molecular structure
merge strategy” you can select the merge strategies for the molecule name or 3D/2D structure according
to Par. 5.2.1: Importing Data.

15

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

Figure 5.9.: Map Imported Properties dialog

Map all Unmapped Properties With the “Map all Unmapped Properties” button all properties for
which you did not give mapping information will be mapped automatically. The property name will be
the name obtained from the import plugin, the type (numeric or text) is set also according to the plugin
information as well. If multiple sources have properties with the same name, these properties will be
mapped to the same internal property.

Important: Please note that plugins typically recognize properties as numeric
only if all values of the property provided by the data source can be interpreted
as floating point number. As a result properties as IC50 are not recognized as
numeric if some values contain characters like <, > or ∼. Since this may be
undesirable, you may want to inspect the default mapping and explicitly mark
some properties as numeric. Values that can not be interpreted as floating
point number will then be discarded during import.

The mapping table In the table you have four columns. The first column (“Imported Property”)
shows the property name obtained from the plugin. In the next column (“Mapped to”) you can select an
existing internal property for this value, alternatively you can choose to create a “new internal property”
which will open the “Create New Internal Property” Dialog (see Sec. 5.2.1.4: Create New Internal Prop-
erty dialog) or you can choose “do not map” which will clear the table cell. In the “Transform Function”
column you can input a transformation function for numerical properties, for example to convert loga-
rithmic to linear values. Symbols you can use are numbers, +,−, ∗, /, ^, (,), log, log10, exp, ceil and
floor. For the input value use the variable x. So in case you want to convert aforementioned logarithmic
values you would enter exp(x). In the last column (“Merge Strategy”) you can select the merge strategy
for this property.

Preview Selected Property With “Preview Selected Property” you can open a list where you can see
the first 100 occurrences of the property, which is currently selected in the table.

16

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

5.2.1.4. Create New Internal Property dialog

Figure 5.10.: Create New Internal Property dialog

In the “Create New Internal Property” dialog, see Fig. 5.10 you can create new internal properties.
First you give the property a name using the “Property name” field. In the “Property type” list you
can select one of the property types (Number, Text, fingerprint types that can be used for clustering in
the dendogram view (see Sec. 7.3: Dendrogram)). In “Property description” you can enter a detailed
description for this property.

5.2.1.5. Import into database dialog

Figure 5.11.: Importing into database dialog

When you start the import in the “Map Imported Properties” dialog the import runs and the “Import
into database” dialog will show up. At the top you see the current process, in the list underneath you
can see some information during the import process. When the import is finished click on “Close” which
concludes creation of a new dataset.

5.2.1.6. Add Properties

It is possible to add new properties to an existing dataset as well, by using the “Add Properties” button
in the “Dataset and Tree Management” dialog. The process is very similar to the normal import process.

17

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

However you cannot add new molecules to the dataset, due to technical reasons. Should your source
contain molecules which are not contained in the current dataset, these molecules will simply be ignored
during import.

Furthermore the “Map Imported Properties” Dialog contains a new field named “merge by” where you
can select either to merge on base of the canonical SMILES strings of the molecules or another property,
which can already be found in the dataset, such as a database id from some public database.

5.2.2. Calculation of Properties

A plugin system was integrated into Scaffold Hunter to support calculation of properties for the molecules
of a dataset. Scaffold Hunter provides a basic set of built-in plugins, and the plugin system allows users
to write calculation plugins suited to their particular needs. See Chap. B: How to Write Plugins for a
detailed description how to write a plugin.

Figure 5.12.: Create Calc Job Dialog

In the Create Calc Job Dialog shown on Fig. 5.12 you can create a batch of calc jobs, that should be
executed one after each other. Each calc job is an instance of a calc plugin, which is configured based
on your needs. Each plugin instance obtains a list of all molecules with their structural data and their
existing properties, and can use this data to calculate new properties for all (or some) molecules. To
create a batch of calc jobs, perform the following steps:

1. Select a calc plugin In the top-left corner of the dialog you will find the list of calc plugins. Select
one by clicking on it and proceed with the next step.

2. Configure the calc plugin As you selected a calc plugin, the configuration panel on the right hand
side of the dialog will show the plugin description and, depending on the plugin, a bunch of options to
adjust the plugin. Choose the options you would like to use, and proceed with the next step.

18

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

3. Add the configured plugin to the list of calc jobs After you have finished configuring the plugin,
you can make the configured plugin instance a calc job. To do this, click on “Create New Calc Job” in
the bottom-right corner of the dialog. If you want to give the calc job a name, enter it in the text field
labeled “Calc Job Name” first. Otherwise leave the field blank. Now the calc job of the chosen name
(or a default name) appears in the list of calc jobs in the bottom-left corner of the dialog. Proceed with
step 1 if you want to add another calc job.

4. (optional) Edit the list of calc jobs The list of calc jobs defines the order in which the jobs are exe-
cuted. To change the order, select a calc job and move it up or down using the arrow buttons. To delete
a calc job, select it and delete it by clicking on the “X” button. If you want to change the configuration
of a calc job, select it. The configuration panel on the right hand side of the dialog then lets you modify
the job.

If you are ready to start the calculation, click “Start Calc”. If you want to return to the previous dialog
without any changes on your dataset, click “Cancel”. After you have started the calculation, a progress
window as shown in Fig. 5.13 will appear and inform you about the calculation status and possible issues
during calculation.

Figure 5.13.: Calculation Progress

5.2.2.1. Transform Options

In addition to the specific options provided by each plugin, there are several plugins that provide trans-
form options. Transform options are used to transform the structure of all molecules, before the plugin
starts the calculation. The following transform options are available:

Use largest fragment Sometimes multiple molecule fragments are stored (unconnected) in one single
structure. If, for example, the plugin calculates a fingerprint which takes the molecular structure into
account, you may want just the largest fragment of the compound to be used for the calculation.

19

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

Use deglycosylated molecules Perhaps deglycosylation (Read Sec. 5.2.3.2: Deglycosylate Molecules
First for an explanation of deglycosylation) has an effect on the accuracy of a calculated fingerprint. In
this case you may want to deglycosylate before the calculation.

Recalculate 2D-coordinates Some calc plugins (e.g. fingerprints) may depend on the 2D-coordinates
of the molecules. If you are not sure whether all imported molecules have appropriate 2D-coordinates,
you propably want to recalculate them for all molecules before calculating the fingerprint.

5.2.2.2. Calc plugins

Currently there are just three calc plugins available; one plugin to calculate additional SMILES strings,
and two plugins to calculate fingerprints which can be used for clustering of molecules. Each plugin
supplies its own description, so just select a plugin from the list of calc plugins as shown in Fig. 5.12
and consult the plugin description for an explanation of what the plugin does.

5.2.3. Scaffold Tree Generation

Scaffold Hunter reduces each molecule of a dataset to its scaffold and arrange the resulting scaffolds
hierarchically in a tree structure called Scaffold Tree. Scaffold Trees were first described by [4] and allow
navigation through the molecules in a meaningful manner. In this chapter you will learn how to generate
a scaffold tree.

(a) Scaffold Tree Generation Dialog (b) Tree Generation Progress

Figure 5.14.: Dialog (a) allows you to configure tree generation; (b) shows the dialog indicating the
process during tree generation

Fig. 5.14a shows the Scaffold Tree Generation Dialog, where you have to fill in a tree title, can fill in an
explaining description of the tree and have to choose some generation options. See Sec. 5.2.3.1: Using
Custom Rules and Sec. 5.2.3.2: Deglycosylate Molecules First to learn more about the options you have.
By clicking “Cancel”, you will be returned to the Sec. 5.2: Dataset Management dialog. By clicking
“Generate Tree” Scaffold Hunter will generate and store the tree with the given options, while showing
the progress in a window shown in Fig. 5.14b.

20

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

5.2.3.1. Using Custom Rules

The ring pruning rules define an order according to which rings are pruned from the scaffold for the
generation of the scaffold tree. In each step of the tree generation, starting from a child scaffold, all
possible parent scaffolds are generated that could be obtained by the removal of one peripheral ring. The
hierarchical set of rules is used to select one pruning among the candidates, i.e. one ring to be pruned.
Thereby each rule might decrease the number of candidate prunings until only a single solutions remains.
In the default mode the rules are applied exactly as described in the Scaffold Tree publication [4]. To
provide more flexibility with ring pruning, the custom rules option allows to define a customized subset
of rules in a desired order selected from a wider range of implemented rules. For this purpose a generic
framework for rules was defined. Each rule consists of two parts:

1. a numerical descriptor that describes either each of the potentially pruned rings or each of the
different remaining parent scaffolds that could be generated from the child scaffold, and

2. a selection criterion that defines whether the candidate prunings with the minimum or the maximum
descriptor value should be retained (i.e. each pruning candidate except the minimum / maximum
are removed from the set of remaining pruning operations) and passed on to the next rule until
only one pruning remains.

If multiple solutions have the minimum / maximum rule descriptor value, all of these are retained. If all
pruning candidates of a scaffold result in the same descriptor value, all pruning candidates are passed
on to the next rule. Like with in the original ruleset, if the custom rules are not successful to identify
a single pruning, a tie-break rule is evoked that selects the first scaffolds after lexicographically sorting
the parent scaffolds according to their canonical SMILES strings.

To choose a set of rules for tree generation, select a ruleset from the drop-down box in the Scaffold Tree
Generation Dialog shown on Fig. 5.14a. If no appropriate ruleset exists, you first have to click on “Edit
Rulesets” to open the Ruleset Management Dialog and create a custom ruleset.

Figure 5.15.: Ruleset Management Dialog

On the left side of Fig. 5.15 you see a list of currently available rulesets. If no ruleset is available you
can create a new one by clicking “New Ruleset”.

21

5.2. DATASET MANAGEMENT CHAPTER 5. GETTING STARTED

If you select a ruleset from the ruleset list, then you can edit the ruleset with the controls located on
the right side of the dialog. You have to enter a name for the ruleset and you can choose rules from the
existing ruleset list on the left side of the dialog to be used in your custom ruleset. To use a rule, select
it and move it to the used rule list by clicking on the right arrow button. You can even select and move
multiple rules by using the Shift or Ctrl modifier keys during selection.

Each row in the used rule list represents one rule, with the descriptor name in the first column, and the
selection criterion in the second column. To change the selection criterion of a rule, select ”maximum
value” or ”minimum value” from the corresponding drop-down box.

The order of the rules in the used rules list determines the order of execution of the rules. You can
change the execution order of a rule by selecting it first and then clicking on the arrow buttons to move
it up or down.

If you finished editing your custom ruleset, click the “Save” button to save the ruleset.

An adaption of the default rules within this framework would look like (for detailed explanation of the
rule name see below):

RRPsize11p "minimum value"

SCPnoLinkerBonds "minimum value"

SCPabsDelta "maximum value"

SCPdelta "maximum value"

RRPsize6 "maximum value"

RRPsize5 "maximum value"

RRPsize3 "maximum value"

RRPnoHetAt "minimum value"

RRPnoNAt "minimum value"

RRPnoOAt "minimum value"

RRPnoSAt "minimum value"

RRPringSize "minimum value"

SCPnoAroRings "minimum value"

RRPhetAtLinked "maximum value"

Implemented Rule Descriptors Three classes of descriptors are provided:

SCP (SCaffold Properties) properties of the resulting parent scaffold after prun-
ing

RAP (Ring Assembly Properties) properties of the ring assembly containing the ring
to be pruned

RRP (Removed Ring Properties) properties of the ring to be pruned

Detailed Description of the Properties The names on the left are the rules that can be used in a
ruleset.

Rule Description

SCPnoLinkerBonds number of acyclic linker bonds
SCPdelta delta value indicating nonlinear ring fusions, spiro systems

bridged systems as defined in [4]
SCPabsDelta absolute delta value indicating nonlinear ring fusions, spiro sys-

tems bridged systems as defined in [4]
SCPnoAroRings number of aromatic rings
SCPnoHetAt number of heteroatoms

22

CHAPTER 5. GETTING STARTED 5.2. DATASET MANAGEMENT

SCPnoNAt number of nitrogen atoms
SCPnoOAt number of oxygen atoms
SCPnoSAt number of sulfur atoms

RAPdelta delta value
RAPabsDelta absolute delta value
RAPnoRings number of rings
RAPnoAroRings number of aromatic rings
RAPnoHetAt number of heteroatoms
RAPnoNAt number of nitrogen atoms
RAPnoOAt number of oxygen atoms
RAPnoSAt number of sulfur atoms

RRPringSize size of removed ring
RRPnoHetAt number of heteroatoms
RRPnoNAt number of nitrogen atoms
RRPnoOAt number of oxygen atoms
RRPnoSAt number of sulfur atoms
RRPhetAtLinked binary descriptor (“maximum value” = True, “minimum

value” = False) indicating whether removed ring was linked
via a linker to a heteroatom in a ring

RRPsize3 binary descriptor: removed ring of size 3
RRPsize4 binary descriptor: removed ring of size 4
RRPsize5 binary descriptor: removed ring of size 5
RRPsize6 binary descriptor: removed ring of size 6
RRPsize7 binary descriptor: removed ring of size 7
RRPsize8 binary descriptor: removed ring of size 8
RRPsize9 binary descriptor: removed ring of size 9
RRPsize10 binary descriptor: removed ring of size 10
RRPsize11 binary descriptor: removed ring of size 11
RRPsize11p binary descriptor: removed ring of size more than 11
RRPlinkerLen1 binary descriptor: removed ring connected via linker of length

1
RRPlinkerLen2 binary descriptor: removed ring connected via linker of length

2
RRPlinkerLen3 binary descriptor: removed ring connected via linker of length

3
RRPlinkerLen4 binary descriptor: removed ring connected via linker of length

4
RRPlinkerLen5 binary descriptor: removed ring connected via linker of length

5
RRPlinkerLen6 binary descriptor: removed ring connected via linker of length

6
RRPlinkerLen7 binary descriptor: removed ring connected via linker of length

7
RRPlinkerLen7p binary descriptor: removed ring connected via linker of length

more than 7

Table 5.1.: Rule descriptors

5.2.3.2. Deglycosylate Molecules First

This check box activates the deglycosylation of molecules that was described in [3]. The procedure iter-
atively removes terminal pentose and hexose sugars based on a substructure matching before generation
of the scaffold tree. It is especially useful when processing natural product structures, i.e. from the Dic-

23

5.3. FILTERING CHAPTER 5. GETTING STARTED

tionary of Natural Products (DNP), that contain molecules with multiple glycosylation patterns.

5.3. Filtering

Figure 5.16.: Filter Dialog

The Filter Dialog shown in Fig. 5.16 is used to filter the molecules of a dataset, so that you can work with
molecules relevant to your problem. On the left hand side of the dialog a list shows the previously used
filtersets. A filterset is a set of filters. One filter defines a constraint for one property of the molecules
or scaffolds of the dataset. A combination of filters can be used to filter the dataset by more than one
property. In the lower left corner of the window there are buttons to add a new filterset, or to delete an
existing one. After selecting one of these filtersets, or after creating a new one, the right hand side of the
window shows the details of the selected filterset. Here the title can be changed and filters can be added
or modified. To add a new filter, simply select a property from the “Choose property” box. For this
property, the user can then select a constraint in the appearing drop-down box. For numerical properties,
this box holds comparison operators like “greater” (>) or “equal” (=). For text properties, the user can
select comparison operators like “contains” or “ends with”. Both property types can also be filtered by
whether or not they are defined. With the “minus” button at the end of each row, the corresponding
filter can be removed. With the “conjunctive / disjunctive” box you can define the operator used to
combine the filters. With the conjunctive method, all filters have to match to allow a molecule to be
added to the resulting dataset. With the disjunctive method, only one filter needs to match.

The “Save” button simply saves the changes made to the selected filterset. To use a filterset, select it
and click the “Ok” button. If the filterset was not saved before clicking “Ok” and you continue without
saving, the current filterset is used for filtering, but the changes are discarded afterwards.

24

6. Main Window

Scaffold Hunter includes several views, that allow the user to visualize and navigate through the imported
chemical data in various ways. Currently the following types of views are supported:

Scaffold tree view The scaffold tree view shows chemical structures arranged in a scaffold tree. This
is the only type of visualization that was supported by Scaffold Hunter version 1.x, and is still a pivotal
part of the application.

Dendrogram view The dendrogram view shows the result of a hierarchical clustering of chemical struc-
tures, supporting various linkage methods and distance measures.

Plot view The plot view shows molecules in a two- or three-dimensional scatter plot based on the
molecules’ properties.

Table view The table view shows molecules in tabular form, including their structure, description and
properties.

See Sec. 6.3: Managing and Arranging Views for an explanation of how to open and manage views
within Scaffold Hunter. The individual types of views are described in greater detail in Chap. 7: Views.
Another concept crucial to Scaffold Hunter is that of subsets, as explained in Sec. 6.2: Subset Manage-
ment.

6.1. Structure of the Main Window

The basic structure of the Scaffold Hunter main window stays the same regardless of the type of view
that’s currently in use. However, most of the individual parts of the user interface will change when
switching between different views, to accommodate the functionality of each view type.

The main window can roughly be divided into five parts:

Menu bar This is the main menu bar at the top of the Scaffold Hunter window, through which most
of Scaffold Hunter’s functionality is accessible. Most of the menu items are available regardless of the
current view. One notable exception is the view-specific sub-menu, which changes to reflect the actions
available in each given view type.

Toolbar The toolbar is located below the menu bar. Most of the toolbar items are view-specific, and
will change when switching to a different type of view.

View tabs This tab bar is the central part of the Scaffold Hunter window, and contains tabs for each
view. Managing views is described in Sec. 6.3: Managing and Arranging Views.

25

6.2. SUBSET MANAGEMENT CHAPTER 6. MAIN WINDOW

Sidebar The sidebar is shown on the left hand side of the main window, and can optionally be hidden
using the “Show Side Bar” button in the “Window” menu or in the toolbar. It consists of several panels
that can be folded or expanded independently by clicking the corresponding caption bar. Each panel
displays additional information about the data that is visible in the currently active view.

Subset bar The subset bar on the right hand side of the window shows a tree of all subsets in the
current session. Like the sidebar, this part of the user interface can be hidden, using the “Show Subset
Bar” button in the “Window” menu or in the toolbar. In addition to the subset tree, the subset bar also
contains buttons for creating new subsets from the selection. Subset management is explained in detail
in Sec. 6.2: Subset Management.

6.2. Subset Management

A central part of the Scaffold Hunter user interface is dedicated to the concept of subsets. Each subset
identifies a set of molecules, all of which are part of the main dataset (hence a subset thereof). Subsets
are arranged in a tree structure, where each subset can have any number of child subsets. Every subset
is guaranteed to contain only molecules that are also in its parent subset.

At the top of the subset tree is the root subset, which is automatically created when starting a new
Scaffold Hunter session. The root subset may be identical to the dataset that has been imported, but it
can also be smaller in case a filter was used when creating the session.

6.2.1. The Subset Tree

The subset tree is the main part of the subset bar at the right hand side of the Scaffold Hunter main
window. In a newly created session, the tree contains only the root subset. All subsets, including the root
subset, can be assigned a custom name and comment. The current subset, i.e. the subset that is shown
in the currently active view, is always shown in bold. The subset tree itself only contains the name of
each subset. Additional information about subsets can be obtained by hovering the mouse cursor above
the subset name, which will pop up a tooltip window.

Most functionality regarding subsets is available using the context menu of the subset tree. For conve-
nience the main menu also contains the “Subset” menu, which always refers to the current subset.

6.2.2. Creating Subsets from the Selection

The most straightforward way to create a new subset is by first selecting all molecules to be included
in the subset, and then making a subset from the selection. Since there is only one, global selection
in Scaffold Hunter, which may include molecules that are not part of the current view, there are two
slightly different ways to decide which molecules are to be included in the new subset.

Subset from the total selection In order to create a subset including all selected molecules, regardless
of the current view, choose “Selection→ Make Subset” in the main menu, or use the first “Make Subset”
button at the bottom of the subset bar. Since the new subset does not necessarily have any relation to
any of the existing subsets, it will be added to the subset tree as a child of the root subset.

Subset from the selection in the current view To create a subset including only the selected molecules
that are also in the current view, choose “Selection→Make Subset from Current View”, or use the second
“Make Subset” button in the subset bar. the new subset is guaranteed to include no molecules that are
not part of the current view’s subset, so that subset will be used as its parent.

26

CHAPTER 6. MAIN WINDOW 6.2. SUBSET MANAGEMENT

6.2.3. Deleting Subsets

The subset of the current view can be deleted by selecting “Subset → Delete” from the main menu. In
the subset tree, subsets are deleted by selecting them and choosing “Delete” from the context menu.
Deleting a subset always closes any open views currently associated with that subset.
If the subset being deleted has any children, those will not automatically be deleted as well. Instead,
they will be re-attached to the parent of the subset being deleted. It is not possible to delete the root
subset.

6.2.4. Set Operations

The basic set operations of union, intersection and difference can be used to create new subsets from
existing subsets. Since these operations require a selection of two or more subsets, they are not available
in the “Subset” menu, but only in the context menu of the subset tree.
As in many other user interfaces, the selection of multiple subsets in the tree is possible using Ctrl

+ Left click to add or remove a single subset to/from the selection. To select multiple adjacent
subsets, Shift + Left click can be used. Once all the desired subsets have been selected, open the
context menu by right-clicking on one of them, and choose “Make Union”, “Make Intersection” or “Make
Difference”. You will then be asked to enter a name for the new subset.

Since the subset tree requires each subset to be an actual subset of its parent, the set operations differ
slightly in where the newly created subset will be added to the tree. For the difference operation, the
order of subsets is also relevant.

Union Generally speaking, none of the original subsets is a superset of the new subset. As a result the
new subset cannot be added below any of them in the tree. In order to ensure that the new subset’s
position is both deterministic and as meaningful as possible, the parent will always be the lowest common
ancestor of all the selected subsets.

Intersection All selected subsets would be a valid parent for the new subset. For deterministic results,
the subset that was clicked on when opening the context menu will be the new subset’s parent.

Difference Mathematically, the difference operation is only defined for two sets. The difference opera-
tion used here deviates from this definition by extending it to mean “one subset, minus the union of an
arbitrary number of other subsets”. The base subset, from which the others will be subtracted, is the
one that was clicked on when opening the context menu. This is also the subset that will then become
the new subset’s parent.

6.2.5. Filtering

The same filtering that is available while creating a session can also be used on individual subsets. Select
“Subset → Filter” to start filtering the subset of the current view, or choose “Filter” in the context
menu of any subset in the subset tree. The Filter Dialog itself works just like the one that is used during
session creation, as described in Sec. 5.3: Filtering.
Once the filter settings have been applied, you will be asked to enter a name for the new subset, and the
subset will be added to the subset tree as a child of the original subset.

27

6.3. MANAGING AND ARRANGING VIEWS CHAPTER 6. MAIN WINDOW

6.3. Managing and Arranging Views

A newly created Scaffold Hunter session will contain four views, one of each type (scaffold tree, dendro-
gram, plot and table), with each view showing the root subset. This setup is meant to serve only as a
starting point. The number of simultaneous views is only limited by the system’s available memory, and
each view can be associated with a different subset and different settings.

6.3.1. Opening and Closing Views

There are several ways of creating a new view. The “Window → Add View” submenu can be used to
create a new view of a given type, showing the root subset. A more flexible way of opening new views
is using either the “Subset” menu or the subset tree’s context menu:

Show in Current View (only in subset tree context menu)
Replaces the subset shown in the currently active view, while otherwise retaining the view’s settings.

Show in New View
Creates a new tab in the current window, showing the selected subset in the chosen type of view.

Show in New Window
Creates a new window and adds a new tab to it, showing the selected subset in the chosen type of
view.

Note that the “Subset” menu always refers to the current view’s subset, while the context menu refers
to the subset being clicked on.

Usually the fastest way to close a view is by using the ’X’ button in the view’s tab, but there are also
menu items (“Window → Close View”) and a keyboard shortcut (“Ctrl+W”) available.

6.3.2. Split Windows

It is possible to simultaneously show two views in the same window, either side by side or one above
the other. To split the window, use “Window → Split Horizontally” and “Window → Split Vertically”.
This will create a new, initially empty tab bar, that can then be filled by moving views to it (see Sec.
6.3.4: Moving Views). The same menu items can also be used to change the orientation of an existing
split.

To get back to a window with no split, use “Window → Single Tab Bar”. This will join all views from
both sides of the split in a single tab bar.

6.3.3. Multiple Main Windows

Sometimes it can be convenient to open views in separate windows, for example to place them on different
monitors, or to avoid a tab bar getting too crowded. Scaffold Hunter supports this by allowing multiple
main windows within the same instance of the application. Windows can be opened using “Window →
Open New Window”, and closed using “Window → Close Window”. Note that while each window can
have its own views and layout, all windows still work on the same dataset and subset tree. Thus, opening
multiple main windows is not the same as opening multiple instances of Scaffold Hunter.

6.3.4. Moving Views

Within a single tab bar, views can easily be moved by simply dragging their tab to a new position.
It’s currently not possible to move views to a different tab bar (in case of split views) or to a different

28

CHAPTER 6. MAIN WINDOW 6.4. INTERACTION BETWEEN VIEWS

window via drag & drop. To move windows from one window or tab bar to another, use “Window →
Move View to Window” and “Window → Move View to Tab Bar”.

6.3.5. Renaming Views

Views are initially named after their type. For example, the tab of a newly created scaffold tree view
will be called “Scaffold Tree”. Views can be renamed to give them a more descriptive label. To do so,
select “Window → Rename View” in the main menu, or “Rename” in the tab’s context menu.

6.4. Interaction between Views

6.4.1. Selection

In order to create subsets containing molecules of interest it is possible to select several molecules in the
views, which are then highlighted in red in all views.

Single molecules or the molecules belonging to a scaffold can be selected or deselected by left clicking a
molecule or a scaffold or in some views by dragging a selection box around them or by using the scaffold’s
context menu. Another possibility to change the selection is the subset menu. If the menu has been
opened via the main menu, it offers options to add the current subset of the active view to the selection,
to remove it, or to replace the selection. The same applies to the subset which has been used to open
the context menu in the subset bar.

The user can also select all molecules of the dataset, clear the selection, invert the current selection or
confine the current selection to the molecules that are visible in the active view by using the selection
menu in the main menu.

The total number of molecules selected and the number of molecules selected that are visible in the active
view are displayed at the bottom of the subset bar. Both have an associated “Make Subset” button that
can be used to create a new subset from the respective set.

Selection colors Table 6.1 shows the possible colors of molecules and scaffold, depending on their se-
lection state:

Display color Selection state

black Unselected molecule or scaffold
red Selected molecule
red Completely selected scaffold (all molecules belonging to the scaffold are selected)

orange Partially selected scaffold (some molecules belonging to the scaffold are selected)
gray Virtual scaffold (scaffold with no child molecules; cannot be selected)

Table 6.1.: Selection colors

6.4.2. Flags

Besides the selection, there is another kind of marking that is shared by all views: flags. Flags are
intended as a fast way of marking molecules and scaffolds, for example as already seen or investigate
later, and are available in a public and in a private variant. Public flags are visible to everyone working
on the dataset, while private flags are only visible to the user who created them.

29

6.5. TOOLTIP WINDOW AND COMMENTS CHAPTER 6. MAIN WINDOW

The user can mark molecules and scaffolds with flags by using the context menu or the main menu entry
“Selection”. If the context menu is used, the private and public flags of the molecule or scaffold under
the cursor can be toggled. The selection menu allows the user to add or remove a public or private flag
for all molecules of the current selection.

6.5. Tooltip Window and Comments

Figure 6.1.: Tooltip

An interactive tooltip window (see Fig. 6.1) is available for the scaffold tree view and the dendrogram
view when you move your mouse over a molecule or scaffold. It combines the following components in
one window.

• a large image of the structure

• configurable information on the properties

• a component to view, add, delete or modify comments

The window behaves different from a normal tooltip in some circumstances. Like a normal tooltip it
disappears as soon as the mouse leaves molecule, scaffold or tooltip window. But if you click inside the
window the window will stick and stay until the focus of the window is lost. This enables you to move
around the mouse freely and (more important) lets you edit the comments more safely.

6.5.1. Configuring the Tooltip

You can find some general options at Session → Preferences → General Configuration in the
menubar.

• enable/disable tooltip

• the size of the image shown in the tooltip

• whether it shows undefined properties or not

• the delay after which the tooltip is shown

30

CHAPTER 6. MAIN WINDOW 6.5. TOOLTIP WINDOW AND COMMENTS

Figure 6.2.: Tooltip Configuration

6.5.2. Configuring the Properties

You can find a dialog to configure the properties at Session → Tooltip Configuration in the menubar.
As you can see in Fig. 6.2 you have a check box in front of every property to enable or disable the property
in the tooltip. As the tooltip can be shown for molecules and scaffolds there are two types of properties.
If the tooltip is displayed over a molecule only the molecule properties will be shown.

The properties for scaffolds are somewhat more complex. You can derive accumulated properties for
scaffolds from the molecule properties that belong to the displayed scaffold. Therefore you can choose an
accumulation function for each numerical molecule property. For example you can display the average,
minimum or maximum of the molecule property when using the tooltip with scaffolds. If you enable
the checkbox Cumulative for scaffold and children this accumulation function is applied to the
molecules of the scaffold and all molecules that belong to any child scaffold.

6.5.3. Comments

You can add, modify and delete comments for a molecule or scaffold directly in the tooltip. You can find
the controls in the bottom left corner of the tooltip (see Fig. 6.1).

Private, public, local and global comments Comments can be private or public and local or global.
Therefore you have 4 different types of comments (private & local, private & global, public & local,
public & global). If a comment is private it is only accessible by the user who created it, while a public
comment can be seen by any other user working on the same database. If a comment is local it is limited
to the current tree. If you choose global instead it will be visible for all datasets and all trees on the
current database for molecules or scaffolds with the same structure.

Add, modify or delete a comment To add a new comment select the type in the drop-down box and
click the plus button. Note that only one comment of each type can exists for each molecule or scaffold.

31

6.6. SETTINGS CHAPTER 6. MAIN WINDOW

Therefore not all or no types may be available in the drop-down box. After adding a new comment a
text field with a save button, delete button and some information about the modification will appear.
You can now modify the (empty or previously existent) comments by editing the text in the text field
and pressing the save button afterwards. The save button will be only accessible if you already modified
the text. Otherwise it will be greyed out. To delete a comment simply press the delete button. The text
field with the according controls will disappear.

6.6. Settings

The Scaffold Hunter settings are divided into two types. There are global preferences and settings
for a specific view. All settings are stored in the database. Therefore your settings travel with your
profile.

Figure 6.3.: Preferences Dialog

Preferences The global preferences are accessible via Session → Preferences in the menu bar. The
Dialog Fig. 6.3 has a General Configuration tab with settings that will apply to all views and the
main window. The options are self explaining. If you select an option by clicking on it you get a more
detailed description in the label below.

There are also tabs for types of views. For example you can find general options for the scaffold tree view.
These settings will apply to all views of one type that are open (e.g. all scaffold tree views). Currently
only the scaffold tree view uses this global settings, but in future there may be also other views available
here.

Configure View The preferences for one specific view are accessible over Session → Configure View.
The dialog Fig. 6.4 has the same layout as the global preferences. It shows one tab for each open view.
If you have two open scaffold tree views you will find two tabs here. The name of the tabs matches
the name of the view tabs in the main window. Renaming the views can thereby significantly improve
the assignment between preferences tabs and the corresponding view (see Sec. 6.3.5: Renaming Views).
Some options may also be available directly over the menu bar or tool bar (for further details see Sec.
7: Views).

32

CHAPTER 6. MAIN WINDOW 6.6. SETTINGS

Figure 6.4.: Configure View Dialog

33

7. Views

This chapter will give you a deeper understanding of each available view. If you want to know how
to handle, manage and arrange views in general terms you may want to read Sec. 6.3: Managing and
Arranging Views instead.

7.1. Scaffold Tree

The scaffold tree view visualizes a scaffold tree, which was generated as described in Sec. 5.2.3: Scaffold
Tree Generation.

7.1.1. Navigation

A new scaffold tree view will show an overview of the whole graph. You may zoom in to get more detailed
information on a part of the graph. Depending on the scale, scaffolds will be represented simplified by a
rectangle or by their structural formula. There are several ways to zoom in/out: You may use the mouse
wheel to magnify/demagnify the view on the area of the mouse pointer or by using the buttons in the
toolbar or “Tree” menu. You may also select the area of interest by a rectangle on the GraphMap, see
Sec. 7.1.1.1: GraphMap. The other navigation mechanism is panning: By keeping the left mouse button
pressed on an empty area in the graph pane and moving the mouse the viewpoint is panned. You may
also use the scrollbars for panning.

Usually not all scaffolds are shown when a new scaffold tree view is opened. Subtrees beginning at a
scaffold can be shown or hidden respectively by clicking on the +/– symbol at the lower left corner of the
scaffold. In addition, the context menu (Sec. 7.1.2: Context Menu) contains options to open complete
subtrees or to open all children on the next hierarchy level. Inverse operations exist to hide scaffolds you
are not interested in. The command to expand the whole tree or to reset it to the default hierarchy level
can be invoked via the toolbar or “Tree” menu (Sec. 7.1.3: Tree Menu & Toolbar).

A scaffold will be shown in different colors based on the global selection as described in Sec. 6.4.1:
Selection. A left-click on an unselected or partially selected scaffold will add all molecules associated
with the scaffold to the selection, a left-click on a fully selected scaffold will deselect all associated
molecules.

You may also navigate using keyboard shortcuts, listed in App. A: Keyboard Shortcuts. There is a cursor
set on one scaffold marked by a blue rectangle. The cursor can be moved using the arrow keys. The
camera automatically retains focus on the cursor.

7.1.1.1. GraphMap

The GraphMap is found in the sidebar on the left hand side and provides an overview on the whole
graph. The current viewport of the graph pane is marked by a transparent red rectangle. Dragging this
rectangle with the mouse will change the viewport of the graph pane accordingly. Click the left mouse
button at an area that is not currently visible to center the viewport on the selected point. You can
define a new viewport by marking a rectangle on the graph map: Click the left mouse button on an
empty area and keep it pressed while moving the mouse. When releasing the mouse button the view

35

7.1. SCAFFOLD TREE CHAPTER 7. VIEWS

will be panned and zoomed to completely contain the selected area. Using your mouse wheel on the
GraphMap will magnify or demagnify the graph pane at the specified point.

7.1.1.2. Magnifying Glass

The Magnifying Glass in the sidebar below the GraphMap is opened by a mouse click on its title bar.
It shows the area below the mouse pointer magnified. You may move the mouse pointer over the graph
pane and navigate in the graph as usual while the Magnifying Glass is active.

7.1.2. Context Menu

Figure 7.1.: The context menu invoked by a right-click on a scaffold.

Click the right mouse button on a scaffold to access the context menu. The menu mainly contains options
that are directly related to the scaffold: You can open/close the children of the scaffold, open the whole
subtree rooted at the scaffold or open all children on the next hierarchy level by the option “Expand
next level”. In addition you can choose to expand the whole tree, by clicking on “Expand all Nodes”.
You can hide the hierarchy levels under the scaffold by choosing “Reduce to this level”.

The commands “Select Subtree” and “Deselect Subtree” add or remove all molecules from the selection,
which are associated with scaffolds located in the subtree that is rooted at the current scaffold. The
command “Subset from Subtree” will create a new subset which contains these molecules.

There are two additional entries to set or remove public and private flags, see Sec. 6.4.2: Flags.

7.1.3. Tree Menu & Toolbar

Figure 7.2.: Meaning of the icons (from left to right): Zoom In, Zoom Out, Fit Graph, Fit Selection,
Expand all Nodes, Number of Rings to Default Level, Increase/Decrease Radius, Lock Radii
while Zooming, Scale cusor node up/down, Normalize cursor node, Scale Selected Scaffolds
up/down, Normalize Selected Scaffolds, Normalize all Scaffolds, Configure Property Map-
pings, Show Scaffold Molecules, Export Image

The “Tree” menu provides access to many different functions related to the scaffold tree view. The
toolbar shown in Fig. 7.2 allows quick access to most of these functions. When you hover the cursor
over an item of the menu or toolbar a tooltip with a description will appear. It follows a list of the menu
items, each with a short description.

36

CHAPTER 7. VIEWS 7.1. SCAFFOLD TREE

Layout Can be used to choose one of the three available layout algorithms. The graph in the current
tab will be laid out accordingly. See Sec. 7.1.4: Layout for a brief description of the layouts.

Show Scaffold Molecules Toggles the molecule view for each node in the scaffold tree, which displays
the molecules associated with a scaffold.

Configure Property Mappings Allows to map different imported properties to several visual features of
the nodes in the scaffold tree. See Sec. 7.1.6: Property Mappings for details.

Zoom In/Out Changes the zoom level of the graph pane.

Fit Graph Changes the zoom level and pans the graph pane to show the whole graph.

Fit Selection Changes the zoom level to show all selected and partially selected scaffolds.

Expand all Nodes Expands the whole Graph.

Number of Rings to Default Level Resets the graph, such that only the hierarchy levels which are
shown by default are displayed.

Increase/Decrease Radius Allows adjustment of the distance between two adjacent rings in the radial
layout.

Lock Radii While Zooming Disables/enables the automatic adjustment of the distance between two
adjacent rings in the radial layout.

Node Scale Resizes the scaffolds of the graph. There are buttons for scaling up/down all currently
selected scaffolds or just the scaffold the cursor is on. In addition “Normalize” buttons are provided
to reset scaffolds to their original size.

Export Image Allows exporting the current viewport or the whole graph as an image.

7.1.4. Layout

(a) (b) (c)

Figure 7.3.: Different layouts of the same graph: (a) Radial Layout, (b) Linear Layout, (c) Balloon
Layout

Scaffold Hunter offers three different layouts, which can be selected by using the “Layout” option in the
“Tree” menu Sec. 7.1.3: Tree Menu & Toolbar. The different layouts are shown in Fig. 7.3. The Radial
Layout (Fig. 7.3a) is the default layout method. With this layout the scaffolds are located according to
their depth on circles with a common center. The Linear Layout (Fig. 7.3b) orders the scaffolds from
left to right. Both layouts emphasize the depth of scaffolds. With the Balloon Layout (Fig. 7.3c) each

37

7.1. SCAFFOLD TREE CHAPTER 7. VIEWS

scaffold is the center of a circle on which its children are distributed. This layout separates subtrees more
clearly from each other.

For the Radial Layout the distance between the circles may be customized. By default the distance
is automatically adjusted depending on the zoom. The “Lock Radii While Zooming” button disables
this mechanism and allows the user to set the distance using the buttons “Increase Radius”/“Decrease
Radius”.

7.1.5. Sorting

Initially the ordering of scaffolds in the tree is chosen in a deterministic way but without any meaning.
Alternatively scaffolds can be sorted according to some property value using the “Sort” sidebar panel
show in Fig. 7.4.

The same panel can be used to define the ordering of the molecules which are shown when the option
“Show Scaffold Molecules” is toggled. To do so select the property by which these molecules should be
sorted in the uppermost box.

Figure 7.4.: The Sidebar sort panel

The property used for sorting can be chosen using the box below “Sort Scaffolds by”. An accumulation
method to determine how scaffold properties will be derived from the properties of associated molecules
can be selected in the box below. The checkboxes underneath can be used to add a colored background
to the graph, where each segment which has the same value of the selected property is colored in the
same shade of the selected color. A label showing this value can be displayed in each segment.

After clicking on “Sort” the scaffolds on the first layer will be reordered according to their property
values. Sorting by property values is applied only to the scaffolds on the first layer. You can however
create a subset out of a subtree and sort the scaffold tree displaying the subset.

7.1.6. Property Mappings

Properties associated with the scaffolds can be mapped to different visual properties of the Scaffold Tree.
Scaffold properties are either directly associated with a scaffold, such as Number of Oxygen Atoms or
can be derived from the properties of the structures which are associated with a scaffold.

The following visual properties are available for mapping:

Node Background Color This changes the background color of the scaffold nodes in the scaffold tree.
Either two colors can be selected and the value range of the property is mapped to the gradient between
those two colors or value intervals can be specified and a color can be assigned to each interval.

38

CHAPTER 7. VIEWS 7.1. SCAFFOLD TREE

Edge Thickness This maps the absolute difference between the values associated with two adjacent
scaffolds onto their connecting edge. The maximum and minimum displayed thickness are predefined
and cannot be adjusted. A gradient mapping maps the greatest difference to the maximum thickness
and the smallest difference to the minimum thickness, intermediate differences are linearly mapped to
intermediate thickness values. Alternatively intervals of differences can be defined, which will then be
mapped to different thickness values.

Edge Color Similarly to the way values can be mapped to the background color of a node they can also
be mapped to the adjacent edges. On the edge a gradient between the colors will be displayed, which is
determined by the adjacent scaffolds.

Label The value associated with a scaffold can be displayed by a label below the node in the scaffold
tree.

Figure 7.5.: An example of an Info Bar.

Info Bar This visualizes distributions of a property for the molecules associated with a scaffold. Intervals
can be specified and a color is associated with each interval. The distribution of these intervals can then
be visualized as shown in Fig. 7.5. Textual properties with ten different values or less can also be
mapped to colors to display such a distribution.

The dialog to configure these mappings is shown in Fig. 7.6. On the left the visual property can be
selected, on the right settings for the selected visual property can be configured. These settings may vary
depending on the visual property. In general the scaffold property to be mapped can be selected using
the box at the top, in case of derived properties a second box will be displayed to select the accumulation
function. If the box “Cumulative for scaffolds and children” below is selected the accumulation function
will not only be applied to values of the structures associated with the scaffold, but also include the
values of all structures, which belong to scaffolds located in the subtree below the scaffold.

7.1.7. Exporting Images

Clicking the “Export Image” button in the toolbar or the “Tree” menu will open the export dialog shown
in Fig. 7.7, which allows you to save the current graph as an image. You can either export the current
view on the graph, which will save only the part of the graph which is currently visible in the graph
pane, or the whole graph. There are three file formats available (SVG, PNG and TIFF) and options to
control the image size. By default the aspect ratio of the exported image is fixed, this can be changed
by clicking on the lock.

Since SVG is a file format for vector graphics the exported image can be scaled without quality loss.
Consequently the specified image size will not have much effect on the quality or file size for SVGs but
is very important for raster formats such as PNG and TIFF. Even if the current view shows rectangles
for scaffolds the exported image will always show their structural formulas.

39

7.1. SCAFFOLD TREE CHAPTER 7. VIEWS

Figure 7.6.: The property mapping dialog showing an interval mapping to the Node Background Color.

Figure 7.7.: The export dialog.

40

CHAPTER 7. VIEWS 7.2. TABLE

7.2. Table

An overview of the aggregated molecule information can be seen in the table view. All the molecule
properties, as well as their titles, SVG-images and the flags set by users, are shown in form of a table.

Figure 7.8.: The tableview

7.2.1. Sorting and Ordering the Table

When you open a table view the data is initially sorted by the molecule title, but the sort order can
be changed anytime by clicking on a column header. The table view supports three sort criteria, which
are applied by consecutive clicks on column headers. The column selected last gets the highest sort
priority.

Apart from sorting the rows of the table you can reorder the columns at any time by dragging them to
their new position.

7.2.2. Resizing Table Cells

A table cell is often too small to show the information that it holds. In this case three little dots appear
at the end of the cell, to indicate that the content is not completely shown. To address this problem
there are two ways to resize table cells: To change the width of a column you can simply click on the
right boundary line of the column header and move it to the left or right, to make the whole column
smaller or wider. The height of the rows can be changed via three buttons in the toolbar:

• the increase button allows you to increase the number of text lines that are shown in a table
cell. Each time it is clicked one more line is added.

41

7.2. TABLE CHAPTER 7. VIEWS

• the decrease button decreases the number of text lines per cell.

• the normalize button sets the number of text lines back to the default value of one.

The content of a table cell is also shown in the Detail View panel in the sidebar, as soon as you move
the mouse pointer to a cell.

Figure 7.9.: Example of a table that shows three text lines in a table cell

7.2.3. The Minimap

The Minimap shows an abstract view of the complete table, where the section that is currently shown
in the main view is highlighted in light red. Apart from just informative reasons the minimap can also
be used to scroll the table. Just click on the highlighted box and drag it to another position.

7.2.4. Sticky Columns

When the table holds a lot of columns – which is a very common case – then it is eligible that some
columns are not scrolled horizontally but stay visible the whole time. The molecule title column is an
example; it may be helpful if this column is always visible. This can be accomplished by putting table
columns into the sticky mode: A sticky column does not scroll horizontally.

This feature can be accessed by two buttons in the toolbar:

• A click on this button turns the leftmost floating column (a column which is not yet sticky)
into the sticky mode. It will not scroll horizontally anymore.

• This button turns the rightmost sticky column back into floating mode, which means that
the column will scroll as usual.

To indicate that a column is sticky it is shown a bit darker than a normal, floating column.

7.2.5. Setting Flags

Flags (public and private) can be set by using the context menu that appears when you right-click
anywhere in the table. The menu item “Toggle public flag (for molecule title)” lets you toggle the public
flag for the specified molecule. The item “Toggle private flag (for molecule title)” does the same for
private flags. The flags are shown in the table in separate columns.

42

CHAPTER 7. VIEWS 7.3. DENDROGRAM

Figure 7.10.: A table with two sticky columns. Note that the scrollbar at the bottom does not include
the sticky columns.

7.2.6. Selecting Molecules

The selection of molecules (a row in the table) works slightly different than with common tables. The
only change we made is that the current selection will not be cleared when you select a new molecule
by clicking on the corresponding row in the table. So you can select/unselect multiple molecules by
consecutive clicking on them.

Additionally you can select many molecules in a row when you hold down the Shift key while clicking
on the first and the last molecule you want to select (which is the common behavior that you may know
from other programs).

7.2.7. Writing and Editing Comments

The comment editor for molecules can be opened by using the context menu.

7.2.8. Placeholders in Table Cells

The table can be used to access all molecule information which is stored in the database. To conserve
memory these information are loaded just when they should be shown. This may cause a little delay in
displaying the content of the table, which can be noticed at fast scrolling over a long distance. During
the loading process the table cells are filled with three dots (“. . . ”) as placeholders. These placeholders
are replaced by the real content as soon as it is available.

7.3. Dendrogram

The dendrogram view shows the result of a hierarchical clustering. A hierarchical clustering works on
a (sub)set of molecules and a couple of properties. In the beginning, the clustering algorithm puts
each molecule into one cluster. Then it searches for two molecules (clusters) with the smallest distance
between each other based on the chosen properties. When found, they are merged into a new cluster.
This will be repeated until only one cluster remains. The result is a tree which represents the merge
history like shown in Fig. 7.11.

The dendrogram view shows this result, allows the user to navigate in the hierarchical tree structure and
to highlight different clusters based on their relation.

7.3.1. The View in Detail

The dendrogram view is separated in four parts, shown in Fig. 7.12. Each part is marked by a surrounding
color as explained below:

43

7.3. DENDROGRAM CHAPTER 7. VIEWS

Figure 7.11.: The tree frame

• the tree frame in which the result is shown (marked yellow)

• the sidebar (marked red)

• the toolbar (marked blue)

• a special representation of the table view (marked green)

Figure 7.12.: The whole view

7.3.2. Sidebar

Fig. 7.12 shows the dendrogram sidebar (marked red).

• The “Start Clustering” button opens the configuration dialog for the clustering

44

CHAPTER 7. VIEWS 7.3. DENDROGRAM

• The “Zoom” element shows the molecule under the mouse in detail

• The “Info” element shows statistical data about the currently chosen clustering

• The “Method Used” element shows which configuration was used to generate the actual dendrogram

• The “Table Detail” element is equal to its correspondent in the real table view

7.3.3. Tree Frame

In this part of the view you can see an actual dendrogram like shown in Fig. 7.11. The molecules on
the bottom are represented by black boxes because the zoom level is too small to show the real images.
The cluster selection bar shown in red in the middle is draggable and divides the subtrees below it into
different clusters. Each cluster separated this way is painted in a different own color. The Info panel in
the sidebar informs about the number of clusters created this way and their size. With the mouse wheel
or the keys “+” and “-“ the view can be zoomed in and out. At a closer zoom level the black boxes at
the bottom are replaced by the real molecule images like shown in Fig. 7.12 (marked yellow).

Figure 7.13.: Zoomed in

The zoom is separated into vertical and horizontal zoom. This is necessary, because the tree usually
has a very small height and a huge width. So when zooming with the mouse wheel, the view scales the
images and than adapts the tree above to fit in the window. Zooming while holding the Ctrl key will
scale only the tree, not the image. In addition to click on an image to add/remove it from the selection,
clicking on an inner node of the tree will result in selecting all leaves below it, if at least one leaf is
unselected and deselect them otherwise.

7.3.4. Toolbar

Figure 7.14.: The toolbar

The two buttons on the left shown in Fig. 7.14 are the standard items to show/hide the side- and subset
bar. The third button from the left shows/hides a special table below the dendrogram. The next four
buttons change the vertical and horizontal zoom of the dendrogram. The second button from the right
fits the dendrogram into the available space. The button at the right zooms the view so that the whole
selection is visible.

45

7.3. DENDROGRAM CHAPTER 7. VIEWS

7.3.5. Table

The shown table below the dendrogram is the standard table view with one additional function, see Sec.
7.2: Table. The first column shows in which subclusters the selection bar in the dendrogram has divided
the molecules. An example is shown in Fig. 7.12 (marked green).

7.3.6. Clustering Configuration Panel

Figure 7.15.: The clustering config dialog

After clicking the start clustering button in the sidebar, a configuration panel as in Fig. 7.15 will show
up. Here, the user can choose from two clustering algorithms and select their parameters:

7.3.6.1. Clustering Algorithms

Normal (exact) clustering: Classical exact SAHN clustering.

Warning: The exact clustering can work on 216 (65.536) molecules at a max,
because of technical restrictions in Java and memory limitation. Some of the
parameters (Euclide in combination with Ward, Median or Centroid) may
work on more molecules, but this is experimental and should only be used
with caution. Please note that these restrictions do not apply to the heuristic
algorithm.

Heuristic clustering: The heuristic SAHN clustering algorithm should be used if the runtime or the
memory consumption by the exact clustering is to high. Empiric tests showed that this algorithm can
be considered useful for subsets with a size larger that 10000 molecules. Two parameters are selectable:
quality and dimensionality. Both have a direct influence on quality and speed. The dimensionality
should be set according to the dimensionality of the data. Low for a dimensionality between 1 and 7,

46

CHAPTER 7. VIEWS 7.4. PLOT

Mid 7-13 and High > 13. If unsure start with a low dimensionality and use a higher value if the quality
is insufficient regardless of which quality is used.

7.3.6.2. Linkage & Distance

The linkage method defines the way in which the distance between clusters is calculated and controls
which pair should be merged.

• Complete Linkage: Merges the two clusters which have the minimum distance between the
farthest pair of both cluster members.

• Group Average Linkage: Merges the two clusters with the minimum distance of the unweighted
cluster average (UPGMA).

• McQuittys Linkage: Merges the two clusters with the minimum distance of the weighted cluster
average (WPGMA).

• Single Linkage: Merges the two clusters with the minimum distance between the nearest pair of
both cluster members.

• Ward Linkage: Merges the two clusters that lead to minimal variance increase.

• Centroid Linkage: Merges the two clusters with the minimum distance of the unweighted centers
(UPGMC).

• Median Linkage: Merges the two clusters with the minimum distance of the weighted cluster
centers (WPGMC).

The accepted types of properties depend on the distance computation.

• Euclide: Any number of numerical properties.

• Tanimoto: Exactly one property which has to be a binary fingerprint.

• Tanimoto Bit: Same as Tanimoto but works on bit strings not on character strings.

• Jaccard: Works on one fingerprint property with feature counts on each position.

7.4. Plot

The plot view allows you to view numerical molecule data in form of two- or three-dimensional scatter-
plots. Any numerical data that is stored in the database can be displayed by linking them either to one
of the three spatial axes or to the color and size attributes of a dot in the diagram.

7.4.1. Choosing the Data to be Displayed

The first thing you want to do after opening a plot view is to select the data that should be displayed.
This can be done with the Property Mapping panel in the sidebar. Here you find a combo box for each
of the three spatial axes, for the dot color and the dot size, which allows you to chose from numerical
molecule properties. Additionally there is a slider to apply a jitter to the data on the spatial axes.

Please note that the data has to be loaded from the database when the mapping is changed. This can
cause a slight delay before the diagram is displayed. The mapping of data to axes is also shown in the
Legend panel of the sidebar. There you can also see the domain of each axis.

47

7.4. PLOT CHAPTER 7. VIEWS

Figure 7.16.: The plot view

Figure 7.17.: The Property Mapping panel

7.4.2. Dot Color and Size

The default color and size for dots can be changed at the toolbar. These values are used when no data
is mapped to the color/size properties. As soon as you change the property mapping the elements in the
toolbar change to let you enter an interval for the color/size of the dots.

7.4.3. Hyperplanes

Sometimes you do not want to see the complete set of data, but a small part of it. This is where the
concept of hyperplanes becomes useful. Hyperplanes allow you to define thresholds for an axis, that
means a minimum and a maximum value that a data must have to be displayed as dot in the diagram.
They can be applied to any of the 5 dimensions (x, y, z, color and size). When hyperplanes are set the
associated threshold values are shown in the diagram as black lines.

Hyperplanes can be set and adjusted using the Hyperplanes panel in the sidebar. For each of the 5
possible dimensions there is a slider that lets you change the upper and the lower threshold value. For
a better control the values can also be entered as numbers in the text fields.

48

CHAPTER 7. VIEWS 7.4. PLOT

Figure 7.18.: The button for the color and the combo box for the dot size. The upper figure shows the
default behavior, when no data is mapped. The lower figure shows the behavior when data
is mapped to color/size.

Figure 7.19.: The use of hyperplanes in a diagram: Without hyperplanes (left figure), with hyperplanes
at the y-axis (middle) and with the y-axis adjusting to the hyperplanes (right figure).

Figure 7.20.: The hyperplane panel

While the axes always try to adjust themselves to the domain that is mapped this behavior may be
inappropriate when using hyperplanes. By default a hyperplane does not influence the domain of an
axis, it just defines which values should be shown and which not. To let an axis adjust according to the
visible range that is defined by the hyperplanes, click the checkbox for the axis in the panel.

7.4.4. Zooming, Scrolling and Rotating the Diagram

The diagram can be zoomed by using the buttons in the toolbar or by using the mouse wheel. When
using the mouse wheel the diagram will be zoomed with keeping the focus at the current position of the
mouse pointer. Furthermore each axis can be scaled independently by using the buttons in the Scale
panel of the sidebar. In case the diagram becomes too large to fit in the window you can scroll around
by clicking in the diagram with the left mouse button and drag it around. Rotating the diagram works
similar, just press the right mouse button while dragging. Rotation only works in 3D-mode.

49

7.4. PLOT CHAPTER 7. VIEWS

The Fit Graph button in the toolbar always resets the zoom, scroll position and rotation angles. Zooming
and scrolling the diagram to show the current selection can be done by clicking the button “Zoom to
current selection” in the toolbar.

7.4.5. Highlighting, Selecting and Picking

To avoid confusion with the dot colors the current selection and flags (public and private) are not shown
in the diagram by default. To make them visible you have to set the accordant highlighting mode, which
can be done with the combo box in the toolbar. When the highlighting mode is set to “Selection” then
the dots that represent the molecules in the current selection are shown in red. Setting the highlighting
mode to “Public flag” shows the molecules with a public flag in green, while the highlighting mode
“Private flag” shows the molecules with a private flag in blue.

These features can also be set and removed from a molecule in the plot view, according to Table 7.1.

Effect Action

add a molecule to or remove it
from the selection

place the mouse pointer over the dot and click the left
mouse button

add multiple molecules to the
selection

hold the Shift key and the left mouse button down while
drawing a box around the dots

remove multiple molecules from
the selection

hold the Ctrl key and the left mouse button down while
drawing a box around the dots

toggle the public flag of a
molecule

place the mouse pointer over the dot and click the middle
mouse button

toggle the private flag of a
molecule

place the mouse pointer over the dot and click the middle
mouse button while pressing the Shift key

Table 7.1.: Plot view Mouse Actions

Please note that the highlighting mode adjusts automatically to the action that is performed.

In any case, no matter if you perform one of these actions or not, the molecule that belongs to the dot
under the mouse pointer is shown in the Detail View panel in the sidebar.

7.4.6. Hiding the Axis Ticks and Grids

To toggle display of the axis ticks and grids there are two buttons in the toolbar:

• this button toggles the display of the ticks

• this button toggles the display of the grids

50

8. Export

Right clicking on a subset offers the possibility to export this subset. At the moment CSV and SDF
export is supported. Starting the export will open the dialog shown in Fig. 8.1.

Figure 8.1.: Export Dialog

If CSV is chosen, the cell separator and the quotation character can be defined. After choosing the
export format, the collection of properties which should be exported can be defined. Clicking the export
button will open a file chooser dialog to define the location and the name of the export.

After completing the export, the program will show a success message.

51

Bibliography

[1] Bernhard Dick, Thorsten Flügel, Henning Garus, Michael Hesse, Philipp Kopp, Philipp Lewe, Do-
minic Sacré, Till Schäfer, and Thomas Schmitz. Endbericht PG 552 - Drug Hunting. Technical
report, 2011.

[2] Adalbert Gorecki, Anke Arndt, Arbia Ben Ahmed, Andre Wiesniewski, Cengizhan Yücel, Geb-
hard Schrader, Henning Wagner, Michael Rex, Nils Kriege, Philipp Büderbender, Sergej Rakov,
and Vanessa Bembenek. Endbericht PG 504 - ChemBioSpaceExplorer. Technical report, 2007.

[3] Marcus A. Koch, Ansgar Schuffenhauer, Michael Scheck, Stefan Wetzel, Marco Casaulta, Alex Oder-
matt, Peter Ertl, and Herbert Waldmann. Charting biologically relevant chemical space: a structural
classification of natural products (sconp). Proceedings of the National Academy of Sciences of the
United States of America, 102(48):17272–17277, November 2005.

[4] Ansgar Schuffenhauer, Peter Ertl, Silvio Roggo, Stefan Wetzel, Marcus A. Koch, and Herbert Wald-
mann. The scaffold tree - visualization of the scaffold universe by hierarchical scaffold classification.
Journal of Chemical Information and Modeling, 47(1):47–58, 2007.

53

A. Keyboard Shortcuts

Key Action

Zoom
+/- Zoom in/out
0 Fit graph / Table: Normalize rows
s Fit selection / Table: Scroll to first selected molecule

Selection

Ctrl+A Select all molecules/scaffolds
Ctrl+Shift+A Deselect all molecules/scaffolds

Ctrl+I Invert selection
Ctrl+D Deselect all molecules in the current views subset
Ctrl+N Make subset from selected molecules

Ctrl+Shift+N Make subset from selected molecules in current view

View

Ctrl+W Close current view
Ctrl+PageUp Show next view

Ctrl+PageDown Show previous view
ALT+← Toggle display of sidebar
ALT+→ Toggle display of subset

Table A.1.: Global shortcuts (view-independent)

Mouse Action

Selection

Left-click on molecule/scaffold Toggle selection of molecule/scaffold
Shift + Left-click + Drag Select all molecules/scaffolds in selection rectangle
Ctrl + Left-click + Drag Deselect all molecules/scaffolds in selection rectangle
Left-click on tree node Toggle selection of subtree (dendrogram view only)

Flags
Middle-click on molecule/scaffold Add/remove public flag for molecule/scaffold

Shift + Middle-click on molecule/scaffold Add/remove private flag for molecule/scaffold

Zoom
WheelUp / WheelDown Zoom in/out

Ctrl + WheelUp / WheelDown Zoom in/out vertically (dendrogram view only)

Navigation
Left-click + Drag Move view area (table view only)

Right-click + Drag Rotate 3D-graph (plot view only)
Right-click on molecule/scaffold Open context menu (all views; except plot view)

Table A.2.: Mouse actions (global and view-specific)

55

APPENDIX A. KEYBOARD SHORTCUTS

Key Action

Navigation

→ Move cursor clockwise
← Move cursor counter-clockwise
↑ Move cursor to first child
↓ Move cursor to parent
C Focus cursor

Radii
Ctrl+↑ Increase radii
Ctrl+↓ Decrease radii

F Toggle radii lock

Expanding

Enter Open/close children
Ctrl+Enter Open/close entire subtree

E Expand next level/Reduce to level
Ctrl+E Expand all nodes

Ctrl+Shift+E Reset to default expand level

Visual

Space Select/deselect scaffold
M (pressed) Show molecules

Ctrl+M Toggle permanent display of molecules
Ctrl+P Configure property mappings...

Node scaling

PageUp Scale up cursor scaffold
PageDown Scale down cursor scaffold

Alt+PageUp Scale up selected scaffolds
Alt+PageDown Scale down selected scaffolds

N Normalize cursor scaffold
Alt+N Normalize selected scaffolds

A Normalize all nodes

Layout
L Switch to linear layout
B Switch to balloon layout
R Switch to radial layout

Table A.3.: Scaffold tree view shortcuts

Key Action

Ctrl+G Toggle display of grid
Ctrl+T Toggle display of ticks

Table A.4.: Plot view shortcuts

Key Action

Ctrl+T Toggle display of table
Ctrl + Plus Zoom in vertically

Ctrl + Minus Zoom out horizontally

Table A.5.: Dendrogram view shortcuts

56

B. How to Write Plugins

In this chapter you will learn the basic parts needed to write new plugins. Feel free to write new
import or calc plugins or to expand the existing ones. We are always happy to get new plugin (versions)
submitted.

B.1. Import Plugins

B.1.1. What is needed to write a new import plugin

To write a new import plugin you need the Scaffold Hunter source code. The plugins basis is held in
the edu.udo.scaffoldhunter.plugins.dataimport. You should put every new plugin inside the edu.

udo.scaffoldhunter.plugins.dataimport.impl.PLUGINNAME package.

B.1.2. Basic parts of a plugin

Every import plugin consists of three base classes:

PluginSettingsPanel At first a class on base of PluginSettingsPanel. This is a JPanel which shows
the configuration options of the plugin in the Import Dialog. It has methods to get and set the current
configuration options and those which have been set in the past.

PluginResults The PluginResults are built on base of a plugin run and contain all results of the
specific plugin with a given configuration. At first there are some basic results, such as the number of
results, name of the rows in resulting data, which of those rows maybe numeric, and finally iterables
consisting of the molecules.

ImportPlugin The import plugin itself is the interface to Scaffold Hunter. It gives instances of the
PluginSettingsPanel and the PluginResults back, has a method to test if a configuration will give
useable results or fail in the beginning and has some basic information, as name and an UID.

Next to those classes there are the Arguments, which is a simple Object consisting of a current config-
uration and a class implementing the Serializeable interface which contains data, which is saved into
the database. It could be used to save older settings.

B.1.3. Writing a simple plugin

The source tree already consists of a very simple plugin, it is named DummyImportPlugin. In this part
you will get a step by step guide whose result will be such a simple plugin, which can generate a simple
error message and gives two empty molecules back.

57

B.1. IMPORT PLUGINS APPENDIX B. HOW TO WRITE PLUGINS

B.1.4. First Version - An empty configuration panel

The source of the first version can be found in the edu.udo.scaffoldhunter.plugins.dataimport.

impl.example1 package. This example contains everything that is needed to be listed in the Import
Dialog. With this example you are not able to go further through the import process, it does not give
back all needed parts. Lets look at the important parts of the source.

B.1.4.1. ImportPlugin.java

@PluginImplementation The first important thing is the Annotation @PluginImplementation. This
is needed by the used plugin framework to recognize this class as a plugin. If this line is missing, the
plugin will not be listed in the import dialog.

extends AbstractImportPlugin Your import plugin has to inherit from AbstractImportPlugin. If
instead of this you only go and implement the ImportPlugin interface there will be a wrong name in
the list of import sources in the import dialog.

getTitle() The getTitle() method returns a short name of the plugin. This is also the name which
is listed in the import dialog.

getID() In getID() your plugin should return a unique name of the plugin, this is for example used by
Scaffold Hunter to match saved properties for the plugins. During the development process of Scaffold
Hunter all Plugins used the form CLASSNAME_VERSION that should be unique enough.

getDescription() The getDescription() method returns a description about for what the import
plugin can be used, like ”This is an import plugin which can be used to import data from our internal
webfrontend”.

getSettingsPanel(settings,arguments) Here we return only an empty SettingsPanel. This will change
in the third example.

getResults(arguments) In the first example we don’t have a result object yet.

checkArguments(arguments) Inside of the checkArguments(arguments) method you should check if
a plugin run will definitely fail, then you return an error message, otherwise null. In this example we
return a message to interrupt the import process. Otherwise the Example1 plugin would cause errors in
the future.

B.1.5. Second Version - We give a simple result

In the second step we will add an ImportPluginResult object, which will give back one molecule without
a structure but with two properties (one will be numerical).

B.1.5.1. Example2ImportPluginResults.java

As a new part in the second Example we have a PluginResults class. This class has to implement the
PluginResults interface. Let us go through the new methods.

58

APPENDIX B. HOW TO WRITE PLUGINS B.1. IMPORT PLUGINS

getSourceProperties() In the getSourceProperties() method you have to give back a Map of PropertyNames.
The Map can also include PropertyDefinitions, which could build the base for a more detailed way of
defining the type of the property, which should be implemented in further versions of Scaffold Hunter,
most times a null-value for the PropertyDefinition part is sufficient. So we generate a new Set with
the two property names ”title” and ”number”.

getProbablyNumeric() The getProbablyNumeric() method gives back a Set of strings containing the
property names of those properties which contain numeric values. It is used in the mapping dialog to
automatically select which properties should be treated as numbers. In this example it is the property
”number”.

getMolecules() This method contains the main plugin task. It returns the Iterable which contains
the new molecules. Here we create a No Notifying Molecule (NNMolecule). The usage of NNMolecule in
place of Molecule has a very high positive impact on the import speed. We add our two properties to
the molecule and put it into a simple List which we return. When you write your own plugin you will
probably write your own class implementing the Iterable interface.

getNumMolecules() The getNumMolecules() method returns the number of molecules which will be
imported. We built one Molecule so we return 1.

addMessageListener(listener), removeMessageListener(listener) The add/removeMessageListener

methods will be used to give fault messages during the import process, so we just ignore them now.

B.1.5.2. Example2ImportPlugin.java

In the plugin itself there are only small changes.

getResults(arguments) The created PluginResults implementation is returned.

checkArguments(arguments) We return something, so do not generate an error message and return
null.

B.1.6. Third Version - Settings panel

The third example adds a very simple Settings Panel to the plugin where we can type in the molecule
title and an error message for the checkArguments(arguments) method.

B.1.6.1. Example3PluginArguments.java

At first there is a new Class, Example3PluginArguments, which holds the arguments for a single plugin
run. This is a very simple class with three fields:

• boolean error : Will be true, if the plugin should generate an error message in the checkArguments
method.

• String errorMessage : The message which will be given back if the plugin generates an error
message.

• String moleculeTitle : The content of the title property in the molecule.

59

B.1. IMPORT PLUGINS APPENDIX B. HOW TO WRITE PLUGINS

B.1.6.2. Example3PluginSettingsPanel.java

The second new class is the Example3PluginConfigurationPanel. So we are able to fill the configuration
panel within the import dialog with content.

Example3PluginSettingsPanel(arguments) The constructor first checks if the ConfigurationPanel got
an arguments object, this happens when you select an item in the import jobs list of the import dialog.
If it does not get an Example3PluginArguments object it generates a new one with the default values.
Afterwards the different parts of the Panel are generated, with the values from the arguments object and
then some formatting is done.

getSettings() We do not safe any settings, so this method returns null. If you want to have saveable
settings generate a new class that implements Serializeable which holds those settings. An instance
of this class with the content which should be saved has to be returned here.

getArguments() The getArguments() method returns the current settings being made in a Example3PluginArguments
object. So here we read the JCheckBox state, and the content of the two JTextField instances and put
them to the corresponding fields in the returned object.

B.1.6.3. Example3ImportPluginResults.java

In the Results class we only had to add the arguments and built the molecule title property on it. So
first there is a new private field Example3ImportPluginArguments which holds the arguments for the
plugin run.

Example3ImportPluginResults(arguments) The new constructor just sets the internal arguments field
to the supplied arguments. When you write a plugin you should put some initialization here, like opening
database connections, counting of molecules, etc.

getMolecules() In the getMolecules() method we set the title property according to the moleculeTitle
field in the arguments.

B.1.6.4. Example3ImportPlugin.java

getSettingsPanel(settings,arguments) Here our new SettingsPanel is returned and we cast the ar-
guments into the right type.

getResults(arguments) Same for the results, they now await arguments, so the class gets them.

checkArguments(arguments) Now we are able to check, if a plugin run will ”succeed” so we either
give the error message from the arguments if the user wants it or return null.

B.1.7. Fourth and last version - Output a message during the import

At this point you are able to build configurations, check for an error at the beginning of the import
and return molecules. There is only one last part missing, the possibility to send Messages during the
import. This is realized in the Example4ImportPlugin.

60

APPENDIX B. HOW TO WRITE PLUGINS B.2. CALCULATION PLUGINS

B.1.7.1. Example4ImportPluginArguments.java

At first we added a new configuration option to switch the message on or off. It is named generateMessage.

B.1.7.2. Example4ImportPluginSettingsPanel.java

In the Settings panel the default value for the generateMessage is added. Furthermore there is a
JCheckBox added, to switch the Message on or off.

B.1.7.3. Example4ImportPluginResults.java

In the Example4ImportPluginResults some changes have been made. First there is a LinkedList which
holds the listeners which are registered with the results.

addMessageListener(listener) The addMessageListener(listener) method now adds the given lis-
tener to the messageListeners list.

removeMessageListener(listener) The removeMessageListener(listener) method now removes the
given listener from the messageListeners list.

getMolecules() The getMolecules() method has been rewritten. Instead of a simple List it now
returns a self written Iterable<Molecule>, which still gives back our simple Molecule. But in the
getNext() method of the included Iterator<Molecule> the argument generateMessage is checked and
if we should send a Message a new instance of the type edu.udo.scaffoldhunter.model.data.Message
is generated which consists of a Message saying that the Molecule structure on base of a SMILES string
could not be generated. You only need to give a type of the message to the constructor of the message,
the name can be empty and the other two arguments null, they are set in other parts of the import process.
Some MessageTypes are already defined in the edu.udo.scaffoldhunter.model.dataimport.MergeMessageTypes
class. Two of them should be useful for import plugins:
If you need other MessageTypes just implement them using the MessageType interface.

Name Description

MOLECULE_BY_SMILES_FAILED Can’t build Molecule on base of SMILES

MOLECULE_BY_MOL_FAILED Can’t build Molecule on base of MOL

B.2. Calculation Plugins

B.2.1. What is needed to write a new calculation plugin

To write a new calc plugin you need the Scaffold Hunter source code. The calc plugin interfaces and
helper classes are stored in the following packages:

• edu.udo.scaffoldhunter.plugins

• edu.udo.scaffoldhunter.plugins.datacalculation

• edu.udo.scaffoldhunter.model.data

• edu.udo.scaffoldhunter.model.datacalculation

61

B.2. CALCULATION PLUGINS APPENDIX B. HOW TO WRITE PLUGINS

Your plugin should be placed in a new package called edu.udo.scaffoldhunter.plugins.datacalculation.

impl.PLUGINNAME, where PLUGINNAME should be replaced by the name of your plugin.

B.2.2. Basic parts of a plugin

Every import plugin consists of three base classes:

PluginSettingsPanel At first a class on base of PluginSettingsPanel from edu.udo.scaffoldhunter.

plugins. This is a JPanel which shows the configuration options of the plugin in the Calc Dialog (See
Fig. 5.12). It has methods to get and set the current configuration options and those which have been
set in the past.

CalcPluginResults The CalcPluginResults class is constructed during a plugin run and contains all
results of the specific plugin with a given configuration. With help of the CalcPluginResults class the
calc plugin tells the plugin system which properties where calculated and supplies an Iterable over all
molecules (the calculated properties are attached to those molecules).

CalcPlugin The calc plugin itself is the interface to Scaffold Hunter. It returns instances of the
PluginSettingsPanel and the CalcPluginResults, has a setter method to get notified about existing
properties and has getter methods which provide basic information like the title, description and unique
identifier of the plugin.

Next to those classes there is a PluginArguments class, which is a simple Object representing a plugin
configuration and a CalcPluginSettings class implementing the Serializable interface which contains
data, that is saved into the database. It could be used by the plugin to save and retrieve settings like
e.g. an arguments history.

B.2.3. Writing a simple plugin

In the next sections we will – in a step-by-step guide – develop a plugin that reads an existing numerical
property, adds or subtracts 1.0 from the property and saves the new value into a new property. The
plugin is configurable and has the ability to send messages to the GUI if something goes wrong.

B.2.4. First version - Create a plugin that does nothing

The first plugin version can be found in edu.udo.scaffoldhunter.plugins.datacalculation.impl.

example1. It implements just the basic things, while having no real functionality. It can be selected and
executed, but behaves transparently, thus doesn’t calculate anything.

B.2.4.1. Example1CalcPlugin.java

@PluginImplementation The first important thing is the @PluginImplementation annotation above
the class definition. This is needed by the plugin framework to recognize this class as a plugin. If this
line is missing, the plugin will not be listed in the calc dialog.

extends AbstractCalcPlugin Your calc plugin has to inherit from AbstractCalcPlugin. This abstract
class implements the ImportPlugin interface for you and also overrides the toString() method so that
your plugin title is shown correctly in the list of calc plugins in the calc dialog.

62

APPENDIX B. HOW TO WRITE PLUGINS B.2. CALCULATION PLUGINS

getTitle() The getTitle() method returns a short name of the plugin. This is also the name which
is listed in the calc dialog.

getID() In getID() your plugin should return a unique name of the plugin, this is for example used by
Scaffold Hunter to match saved properties for the plugins. During the development process of Scaffold
Hunter all plugins used the form CLASSNAME_VERSION that should be unique enough.

getDescription() The getDescription() method returns a description about for what the calc plugin
can be used, like ”This is a calc plugin which can be used to calculate the xyz-fingerprint”.

setAvailableProperties(availableProperties) As we do not need to know something about existing
properties yet, we leave this method blanc. This will change in the fourth version.

getSettingsPanel(settings,arguments) As we do not need any configuration yet, we just return an
empty instance of SettingsPanel. This will change in the third version.

getResults(arguments,molecules,msgListener) The given molecules parameter is an Iterable over
the available molecules. As we do not want to calculate any property nor modify any molecule, we
return a class implementing CalcPluginResults interface, which will return the molecules parameter
unchanged. It also returns an empty Set of PropertyDefintitions, which declares we have no properties
to be added to Scaffold Hunter.

B.2.5. Second version - ’Calculate’ a new property

The second version of the plugin can be found in edu.udo.scaffoldhunter.plugins.datacalculation.

impl.example2. Here, we change our last plugin version, so that it creates and saves a property for all
given molecules. We don’t really calculate something, we just create a numerical property with value
1.0.

B.2.5.1. Example2CalcPlugin.java

Example2CalcPlugin() In the constructor of Example2CalcPlugin, we create a new PropertyDefinition

and store it in a member variable named propDef. propDef describes the characteristics of the property
we want to add to every molecule. Therefore we set the property type to be a numerical property. See
Table B.1 to learn which property types are available. We also set a title, a description and a key. The
title is a short description of the property, where as the description is a sentence describing the property
in detail. The property key is used for internal processing and written in uppercase letters by convention.
It should be as unique as possible. Additionally, we set the property definition to be mappable (this
means it can be mapped on a visual feature in the main program) and define it as molecule property (by
saying it is not a scaffold property).

getResults(arguments,molecules,msgListener) Here we change our custom CalcPluginResults im-
plementation: In the getMolecules() method we not simply return the Iterable over the available
molecules like in the last version. Instead we transform all molecules with a custom transform function
first, and return the transformed molecules. The transform function will do all the work like calculating a
property and adding it to the molecule. Read Sec. B.2.5.2: Example2CalcPluginTransformFunction.java
to see what is does in our example.
In the getCalculatedProperties() method we return a Set which contains the propDef we created
before. This notifies the plugin system we want to add this property.

63

B.2. CALCULATION PLUGINS APPENDIX B. HOW TO WRITE PLUGINS

PropertyType Description

NumProperty An ordinary numerical property.

StringProperty An ordinary string property.

BitStringFingerprint A bit fingerprint represented by a string of 1 and 0 (chars).

BitFingerprint A bit fingerprint that interprets every bit of a string as a bit. This
is logically identical to BitStringFingerprint but has less memory
consumption.

NumericalFingerprint A fingerprint that consists of many numerical values. A Numeri-
calFingerprint is a simple string with integer values separated by
a comma: int,int,...

Table B.1.: Property Types

B.2.5.2. Example2CalcPluginTransformFunction.java

implements Function<Molecule, Molecule> Our transform function needs to implement the Function
interface and we want to transform from molecule to molecule.

Example2CalcPluginTransformFunction(propDef) In the constructor of the Example2CalcPluginTransform
Function we simply save the given PropertyDefinition parameter in a member variable named propDef.
We will need this in the apply() function.

apply(molecule) The apply() functions gets one molecule as input parameter, and returns the trans-
formed molecule. We just insert a mapping from the propDef (our PropertyDefinition) to the value
1.0 to the molecules property map. Then we return the molecule. The plugin system will read this map
and save the property.

B.2.6. Third version - Make the plugin configurable

The third version of the plugin can be found in edu.udo.scaffoldhunter.plugins.datacalculation.

impl.example3. We now want to make the plugin configurable. The user should choose whether the
’calculated’/added property is set to 1.0 or −1.0, by enabling or disabling a checkbox. Therefore we will
extend PluginSettingsPanel by a checkbox and introduce a CalcPluginArguments class to store the
state of the checkbox.

B.2.6.1. Example3CalcPluginArguments.java

The Example3CalcPluginArguments class just has a boolean member variable encoding the state of the
checkbox. Additionally it has a getter and a setter method for this variable.

B.2.6.2. Example3CalcPluginSettingsPanel.java

Example3CalcPluginSettingsPanel(arguments) The Example3CalcPluginSettingsPanels construc-
tor saves a reference to the given arguments parameter. It also creates a checkbox which is initialized
to the state stored in the arguments parameter and adds it to the panel. Additionally it creates an
ActionListener which reacts on changes of the checkbox state and updates the corresponding boolean

value in the arguments.

64

APPENDIX B. HOW TO WRITE PLUGINS B.2. CALCULATION PLUGINS

getArguments() The getArguments() method simply returns the arguments.

B.2.6.3. Example3CalcPluginTransformFunction.java

The Example3CalcPluginTransformFunction constructor is changed so that it saves a reference to the
new arguments parameter.

apply(molecule) The apply() method now determines the property value based on the saved arguments.

B.2.6.4. Example3CalcPlugin.java

In the calc plugin itself there are just a few changes. The following methods changed:

getSettingsPanel(settings,arguments) The getSettingsPanel() method creates a new Example3

CalcPluginArguments instance, if the arguments parameter is null. You should always initialize your
arguments in this way. Afterwards a new Example3CalcPluginSettingsPanel is instantiated with the
Example3CalcPluginArguments as parameter and returned.

getResults(arguments,molecules,msgListener) In the getResults() method there is just one small
change: The arguments parameter is casted and passed to the Example3CalcPluginTransformFunctions
constructor.

B.2.7. Fourth version - Use existing properties for calculation

The fourth version of the plugin can be found in edu.udo.scaffoldhunter.plugins.datacalculation.

impl.example4. In this version we want to read existing numerical properties and let the user select
one. For every molecule our plugin creates a new property which is the same as the selected one, but
1.0 or −1.0 (based on the users choice) is added to the property value.

B.2.7.1. Example4CalcPluginArguments.java

A new variable which saves the property chosen by the user is added together with corresponding getter
and setter methods to the PluginArguments from the last version.

B.2.7.2. Example4CalcPluginSettingsPanel.java

The PluginSettingsPanel from the last version is extended to show a JList with all numerical property
definitions. A list selection listener is used to update the Example4CalcPluginArguments with the
property definition selected by the user.

B.2.7.3. Example4CalcPluginTransformFunction.java

The apply() method was adjusted so that the value of the chosen property is read from the input
molecule, 1.0 or −1.0 is added and the resulting new property value is appended to the property map of
the output molecule.

65

B.2. CALCULATION PLUGINS APPENDIX B. HOW TO WRITE PLUGINS

B.2.7.4. Example4CalcPlugin.java

In comparison to the last version there are several small changes in Example4CalcPlugin. The construc-
tor was deleted and the creation of the property definition moved to the getResults() method.

setAvailableProperties(availableProperties) In the setAvailableProperties() method the available
Properties are saved as a member variable. Please note that the setAvailableProperties() method is
the first method called by the plugin system after instantiation of the plugin. For this reason the plugin is
able to use this information when creating a SettingsPanel in the getSettingsPanel() method.

getSettingsPanel(settings, arguments) The only change made in the getSettingsPanel() method is
that the availableProperties are passed to the constructor of the Example4CalcPluginSettingsPanel.

getResults(arguments,molecules,msgListener) The getResults() method is now responsible for cre-
ation of the PropertyDefinition stored in propDef. propDefs key, title and description attributes
are set dynamically based on the corresponding attributes of the chosen input property stored in the
parameter arguments.

B.2.8. Fifth and last version - Display a message during calculation

The fifth and last version of the plugin can be found in edu.udo.scaffoldhunter.plugins.datacalculation.

impl.example5. Here we will enable the plugin to send messages to the GUI in case that the input prop-
erty chosen by the user is not defined for a molecule.

B.2.8.1. Example5CalcPlugin.java

In comparison to the last plugin version, there is just one small change: The getResults(arguments,

molecules,msgListener) method now passes the msgListener parameter to the constructor of the
Example5CalcPluginTransformFunction.

B.2.8.2. Example5CalcPluginTransformFunction.java

All the message handling is done in the Example5CalcPluginTransformFunction. In its constructor we
therefore read the new msgListener parameter and save it as a member variable with the same name.
In the apply() method we will then use the msgListener member variable to send a message.
But first we need more details about the message system integrated into the calc plugin system. Because
the msgListener variable references an object implementing the MessageListener interface, we are able
to send a Message object by calling msgListener.receiveMessage(message). Suited for the needs of
calc plugins there is the CalcMessage class which extends the Message class. CalcMessage has two
similar constructors allowing to create a message with a desired MessageType, a molecule title and
(optionally) a property definition. An object implementing the MessageType interface defines a message
string and a message icon. For convenience there is an enum CalcMessageTypes with some predefined
MessageTypes, which can be used for your message. See Table B.2 to learn what types you can use.
Depending on the used MessageType implementation some or all of the given attributes of a message
are presented to the user in a tree-like manner shown in Fig. 5.13.

apply(molecule) In the apply() method an else clause (which sends the message) was inserted after
the if-block (which does the calculation). So in case the chosen property is not defined for the given
molecule, a CalcMessage is created and sent to the GUI. Note that the molecule title needed to construct
the message is read from the molecule properties map, by asking for the key CDKConstants.TITLE.

66

APPENDIX B. HOW TO WRITE PLUGINS B.2. CALCULATION PLUGINS

B.2.8.3. Example5CalcPluginArguments.java

This class remains completely unchanged.

B.2.8.4. Example5CalcPluginSettingsPanel.java

This class remains completely unchanged.

Enum constant Message text

PROPERTY_NOT_PRESENT <molecule title>: source property <property definition title>
needed for calculation was not present, thus no value calculated

CALCULATION_ERROR <molecule title>: an error occurred in the calculation plugin, thus
no value calculated

Table B.2.: Calc Message Types

B.2.9. Use transform options to handle frequent tasks

If you write a calc plugin that takes the structural information (e.g. 2D graph structure) of a molecule
into account, then you may want to give the user the opportunity to use transform options. Transform
options are a kind of preprocessing on all molecules before the calc plugin operates on them. See Sec.
5.2.2.1: Transform Options for more information.

Using transform options is rather simple. First change your PluginArguments class so that it inher-
its from AbstractCalcPluginArguments, which can be found in edu.udo.scaffoldhunter.plugins.

datacalculation. The second thing you have to do, is to integrate an instance of CalcPluginTransformOptionPanel
(can be found in edu.udo.scaffoldhunter.plugins.datacalculation) in your custom PluginSettingsPanel.
As the name suggests, you can add the CalcPluginTransformOptionPanel like any other Swing con-
tainer somewhere to your custom panel. When instantiating CalcPluginTransformOptionPanel, you
need to pass your PluginArguments instance to its constructor. After following the instructions above
your plugin will show a panel with transform options and depending on the users choice the molecules
are transformed automatically before they are processed by the plugin.

67

C. FAQ - Frequently Asked Questions

C.1. How can I prevent other users from getting access to my data?

If you conduct a study with confidential data and do not want any other user to access Scaffold Hunters
internal database, then use a MySQL server installed on your local computer. You can also use the
connection type HSQLDB in the Fig. 4.2, and save the database file on a secure place somewhere on your
harddisk.

C.2. The tooltip window annoys me!

In order to disable the Tooltip window select Session → Preferences → General Configuration

from Scaffold Hunters menu bar and disable the checkbox labeled “enable tooltips”. Instead of disabling
the tooltip, you can adjust the other tooltip settings as well. It is possible to change the maximum size
of the structure image shown in the tooltip or to select the tooltip popup delay.

C.3. I cannot use all clustering options – there are no properties
available for some distance measures!

Some distance measures are only applicable on molecule fingerprints. Read Chap. 5.2.2: Calculation of
Properties to learn how to calculate additional properties like chemical fingerprints.

C.4. I have lost my password, how can I access my data?

As Scaffold Hunter saves your password encrypted, there is no possibility to restore your password.
But it is possible to create a new password. First you need a tool to manage MySQL databases (for
example: MySQL-Workbench1). Start Scaffold Hunter and go to the StartDialog. Create a new user and
note username and password. Open the database management tool of your choice and connect to the
database using the data you used in the Connection Dialog shown on Fig. 4.2. After you have connected
to the database, you will probably see a long list of database tables. Select the table profiles and edit
the table data. Search for the two rows showing your old and your newly created username. Copy the
data of the fields password and salt from the row corresponding the new username to the fields in the
row corresponding your old username. Submit your changes and exit the management tool. Now start
Scaffold Hunter and login with your old username and the newly created password. Thats it.

WARNING: Be careful while editing the database. Please make a backup of
the database prior to editing. Only follow the above instructions if you exactly
know what you are doing.

1http://www.mysql.de/products/workbench/

69

http://www.mysql.de/products/workbench/

	Titlepage
	Contents
	Introduction
	Requirements
	System Requirements
	Database
	Java Virtual Machine

	Installation
	Installing Scaffold Hunter
	Installing Plugins
	Starting Scaffold Hunter

	Start Dialog
	Setting up a Database Connection
	User Management

	Getting Started
	Session Management
	Dataset Management
	Importing Data
	Calculation of Properties
	Scaffold Tree Generation

	Filtering

	Main Window
	Structure of the Main Window
	Subset Management
	The Subset Tree
	Creating Subsets from the Selection
	Deleting Subsets
	Set Operations
	Filtering

	Managing and Arranging Views
	Opening and Closing Views
	Split Windows
	Multiple Main Windows
	Moving Views
	Renaming Views

	Interaction between Views
	Selection
	Flags

	Tooltip Window and Comments
	Configuring the Tooltip
	Configuring the Properties
	Comments

	Settings

	Views
	Scaffold Tree
	Navigation
	Context Menu
	Tree Menu & Toolbar
	Layout
	Sorting
	Property Mappings
	Exporting Images

	Table
	Sorting and Ordering the Table
	Resizing Table Cells
	The Minimap
	Sticky Columns
	Setting Flags
	Selecting Molecules
	Writing and Editing Comments
	Placeholders in Table Cells

	Dendrogram
	The View in Detail
	Sidebar
	Tree Frame
	Toolbar
	Table
	Clustering Configuration Panel

	Plot
	Choosing the Data to be Displayed
	Dot Color and Size
	Hyperplanes
	Zooming, Scrolling and Rotating the Diagram
	Highlighting, Selecting and Picking
	Hiding the Axis Ticks and Grids

	Export
	Bibliography
	Keyboard Shortcuts
	How to Write Plugins
	Import Plugins
	What is needed to write a new import plugin
	Basic parts of a plugin
	Writing a simple plugin
	First Version - An empty configuration panel
	Second Version - We give a simple result
	Third Version - Settings panel
	Fourth and last version - Output a message during the import

	Calculation Plugins
	What is needed to write a new calculation plugin
	Basic parts of a plugin
	Writing a simple plugin
	First version - Create a plugin that does nothing
	Second version - 'Calculate' a new property
	Third version - Make the plugin configurable
	Fourth version - Use existing properties for calculation
	Fifth and last version - Display a message during calculation
	Use transform options to handle frequent tasks

	FAQ - Frequently Asked Questions
	How can I prevent other users from getting access to my data?
	The tooltip window annoys me!
	I cannot use all clustering options – there are no properties available for some distance measures!
	I have lost my password, how can I access my data?

